您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙教版八年级数学上册第二章知识点+注意点+经典例题
八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点。[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称的性质]①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2.2等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1.有两条边相等的三角形是等腰三角形。★2.在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.(2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2.5逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。1.命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。2.正确的命题叫真命题,不正确的命题叫假命题。3.基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。4.定理:用逻辑的方法判断为正确并作为推理的根据的真命题。注意:基本事实和定理一定是真命题。互逆命题:一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫互逆命题。如果把其中一个叫做原命题,那么另一个就叫做它的逆命题。互逆定理:如果一个定理的逆命题也是真命题,那么这两个定理叫做互逆定理。其中一个定理叫做另一个定理的互逆定理。注意:1.逆命题、互逆命题不一定是真命题,但逆定理、互逆定理一定是真命题。2.所有的命题都有逆命题,但不是所有的定理都有逆定理。2.6直角三角形[直角三角形]有一个角是直角的三角形叫做直角三角形。[直角三角的性质]★1.直角三角形的两个锐角互余.★2.直角三角形斜边上的中线等于斜边的一半。★3.在直角三角形中,30°角所对的直角边等于斜边的一半.[直角三角的判定]★1.有一个角是直角的三角形是直角三角形★2.有两个角互余的三角形是直角三角形3.补充:如果三角形中一边上的中线等于这条边的一半,那么这个三角形是一个直角三角形。2.7勾股定理[勾股定理]一、知识结构[勾股定理的逆定理]如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。定理:222cba应用:主要用于计算直角三角形的性质:勾股定理直角三角形的判别方法::若三角形的三边满足222cba则它是一个直角三角形.勾股定理1、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、如何判定一个三角形是直角三角形(1)先确定最大边(如c)(2)验证2c与22ba是否具有相等关系(3)若2c=22ba,则△ABC是以∠C为直角的直角三角形;若2c≠22ba,则△ABC不是直角三角形。3、勾股数满足22ba=2c的三个正整数,称为勾股数,如(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17;(5)7,24,25(6)9,40,412.8直角三角形全等的判定[直角三角形的判定方法——HL]两Rt△三角形一条斜边与一条直角边对应相等则两三角形全等[角平分线的性质定理的逆定理]★角的内部,到角两边距离相等的点,在这个角的平分线上。补充知识:1、三角形中的中位线★连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。(3)摄影定理★在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BDADCD2ABADAC2CD⊥ABABBDBC2(4)常用关系式由三角形面积公式可得:ABCD=ACBC三、重点解读1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2.等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”;3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。不要一看到直角三角形两边长为3和4,就认为另一边一定是5;5.“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”等判定一般三角形全等的方法对于直角三角形全等的判定同样有效。切记!!!两边及其中一边的对角对应相等的两个三角形不一定全等,也就是边边角,没有边边角定理。因此在证明全等时千万不要这样做。本章解题时用到的主要数学思想方法:⑴分类讨论思想(特别是在语言模糊的等腰三角形中)(留意后面的例题)⑵方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长(留意后面的例题)⑶等面积法FEOBCA12DEFBCADEABCEDCABF四、典型例题(一)、角平分线+平行线1、在△ABC中,三内角互不相等,BO平分∠ABC,CO平分∠ACB。过O点作EF,使EF∥BC。(1)图中有几个等腰三角形?(2)猜测线段BE、CF、EF有什么数量关系,并说明理由。2、在△ABC中,∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB,过O点作EF,使EF∥BC,且∠EBO=30°。若BE=5,△ABC的周长为_________。(二)、角平分线+垂线3、如图:AB=AC,∠1=∠2,AE⊥CD于F交BC于点E,求证:AB=CE。4、如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,求证:BD=2CE(三)、直角三角形的一个锐角平分线+斜边上的高线5、如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB于D,它们交于点F,△CFE是等腰三角形吗?试说明理由.FEABCDMNDBACE(四)、等边三角形的几个基本图形:6、等边三角形ABC中,BD=CE,连接AD、BE交于点F。∠AFE=_________。7、如图点A、C、E在同一直线上,△ABC和△CDE都是等边三角形,M、N分别是AD、BE的中点。说明:△CMN是等边三角形。8、已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别是h1,h2,h3,△ABC的高为h,若点P在一边BC上(图1),此时h3=0,可得结论h1+h2+h3=h,请你探索以下问题:当点P在△ABC内(图2)和点P在△ABC外(图3)这两种情况时,h1、h2、h3与h之间有怎样的关系,请写出你的猜想,并简要说明理由.ABCDEMN图1ABCDEMN图2ABCDMN图3CMABED(五)、等腰直角三角形的几个基本应用9、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥M于E。(1)当直线MN绕点C旋转到图1位置时,说明△ADC≌△CEB的理由;(2)当直线MN绕点C旋转到图2位置时,说明DE=AD-BE的理由;(3)当直线MN绕点C旋转到图3位置时,试问DE、AD、BE有怎样的等量关系?请写出这个等量关系,并说明理由.10、如图,在直角△ABC中,∠C=90,AC=BC,D,E分别在BC和AC上,且BD=CE,M是AB的中点。求证:△MDE是等腰直角三角形。ABCD(六)、勾股定理、勾股定理的逆定理、勾股定理与方程11、观察下面表格中所给出的三个数a,b,c,其中a,b,c为正整数,且abc(1):试找出他们的共同点,并证明你的结论(2):当a=21时,求b,c的值12、如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ。(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.13、等腰三角形底边上的高为8,周长为32,求这个三角形的面积分析:对于没有图形的大题(指需要过程的题目),最好自己画图,与人方便,与己方便。解:设这个等腰三角形为ABC,高为AD,设BD为x,则AB为(16-x),由勾股定理得:x2+82=(16-x)2即x2+64=256-32x+x2∴x=6∴S∆ABC=BC•AD/2=2•6•8/2=48,3,4,532+42=525,12,1352+122=1327,24,2572+242=2529,40,4192+402=412……..……21,b,c212+b2=c214、矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在DC边上的点G处,求BE的长。(七)、需要分类讨论的(主要是由语言的模糊造成要讨论)有一个角等于50°,另一个角等于__________的三角形是等
本文标题:浙教版八年级数学上册第二章知识点+注意点+经典例题
链接地址:https://www.777doc.com/doc-1415795 .html