您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 高中数学立体几何方法题型总结
1立体几何重要定理:1)直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.2)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.3)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.4)两个平面垂直性质判定:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.5)推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O作OA、OB分别垂直于21,ll,因为OBPMOAPM,,,则OBPMOAPM,.一:夹角问题①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.②直线的倾斜角、到的角、与的夹角的取值范围依次是.异面直线所成角:范围:]90,0((1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线构成三角形;解三角形求出角。(常用到余弦定理abcba2cos222)(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;(3)向量法。转化为向量的夹角ACABACABcos(计算结果可能是其补角)直线与平面所成的角=时,∥或0bob斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;向量法:设直线l的方向向量为l,平面的法向量为n,l与所成的角为,l与n的夹角为,则有sincoslnln的求法二面角l的平面角,(1)定义法:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则PθMABOθcba2射线m和n的夹角为二面角—l—的平面角。(2)三垂线法:(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)向量法:设1n,2n是二面角l的两个面,的法向量,则向量1n,2n的夹角(或其补角)就是二面角的平面角的大小.若二面角l的平面角为,则1212cosnnnn.二、空间距离问题两异面直线间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,n且//m,则异面直m和n之间的距离可转化为直线m与平面之间的距离。方法二:高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算,直接计算公垂线段的长度。点到直线的距离:一般用三垂线定理作出垂线再求解;向量法:点到直线距离:在直线l上找一点,过定点且垂直于直线l的向量为n,则定点到直线l的距离为cos,ndnn点到平面的距离方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)等体积法步骤:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=31S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.方法二:坐标法。APnAPdcosnAPn线面距、面面距均可转化为点面距三、平行与垂直问题证明直线与平面的平行:(1)转化为线线平行;(2)转化为面面平行.证明平面与平面平行:(1)转化为线面平行;(2)转化为线面垂直.证明线线垂直:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;方法(2):用线面垂直实现。方法(3):三垂线定理及其逆定理。nmθαPOAnOAP3mlmlPOlOAlPAl证明线面垂直:(1)转化为该直线与平面内相交二直线垂直;(2)转化为该直线与平面的一条垂线平行;(3)转化为该直线垂直于另一个平行平面;(4)转化为该直线与两个垂直平面的交线垂直.方法(1):用线线垂直实现。方法二:用面面垂直实现。lABACAABACABlACl,llmlm,面面垂直:ll方法一:用线面垂直实现。方法二:计算所成二面角为直角。高中数学之立体几何空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对正、高平齐、宽相等3直观图:斜二测画法(角度等于45度或者135度)4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x轴的线长度不变;(3).画法要写好。空间几何体的表面积与体积(一)空间几何体的表面积:1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积3圆锥的表面积:2Srlr4圆台的表面积22SrlrRlR5球的表面积24SR6扇形的面积公式213602nRSlr扇形(其中l表示弧长,r表示半径)注:圆锥的侧面展开图的弧长等于地面圆的周长(二)空间几何体的体积1柱体的体积VSh底2锥体的体积13VSh底3台体的体积1)3VSSSSh下下上上(4球体的体积343VR平面的基本性质mαllAOPαlβαmlβα222rrlS4公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外)相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点异面直线的判定证明两条直线是异面直线通常采用反证法;有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定1.定义:若两直线成90°角,则这两直线互相垂直.2.一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c3.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,bα,a⊥b.4.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.5.三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.5(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若aα,bα,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,lα,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,lα,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若Aα,Bα,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,aα,aβ,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,bα,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或bα)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若mα,nα,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,lβ,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,bα,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,bα,c,dβ,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a6-β=90°α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,lα,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则bα.一、平面.1.经过不在同一条直线上的三点确定一个面.2.两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3.过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)4.三个平面最多可把空间分成8部分.(X、Y、Z三个方向)二、空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3.平行公理:平行于同一条直线的两条直线互相平行.4.等角
本文标题:高中数学立体几何方法题型总结
链接地址:https://www.777doc.com/doc-1421212 .html