您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 九年级-有关圆的中考题汇编(含答案)
1、(2011•湖州)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.(1)求OE和CD的长;(2)求图中阴影部队的面积.2、(2011•衡阳)如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.3、(2011•杭州)在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.4、(2011•杭州)在△ABC中,AB=√3,AC=√2,BC=1.(1)求证:∠A≠30°;(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.5、(2011•贵阳)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是_________.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)6、(2011•抚顺)如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.(1)求证:CF为⊙O的切线.(2)若半径ON⊥AD于点M,CE=√3,求图中阴影部分的面积.7、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=12∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=√55,求BC和BF的长.8、(2010•义乌市)如图,以线段AB为直径的⊙O交线段AC于点E,点M是𝐴𝐸̂的中点,OM交AC于点D,∠BOE=60°,cosC=12,BC=2√3.(1)求∠A的度数;(2)求证:BC是⊙O的切线(3)求MD的长度.9、(2010•沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB=√3:2,求⊙O的半径及DF的长.10、(2010•绍兴)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是𝐴𝐵̂的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.(1)求证:EF是⊙O的切线;(2)若EF=8,EC=6,求⊙O的半径.11、(2010•丽水)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,𝑐𝑜𝑠∠𝑂𝐵𝐻=45.(1)求⊙O的半径;(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?请说明理由.1、(2011•湖州)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.(1)求OE和CD的长;(2)求图中阴影部队的面积.考点:扇形面积的计算;垂径定理。分析:(1)在△OCE中,利用三角函数即可求得CE,OE的长,再根据垂径定理即可求得CD的长;(2)根据半圆的面积减去△ABC的面积,即可求解.解答:解:(1)在△OCE中,∵∠CEO=90°,∠EOC=60°,OC=2,∴OE=12OC=1,∴CE=√32OC=√3,∵OA⊥CD,∴CE=DE,∴CD=2√3;(2)∵S△ABC=12AB•EC=12×4×√3=2√3,∴𝑆阴影=12𝜋×22﹣2√3=2𝜋﹣2√3.点评:本题主要考查了垂径定理以及三角函数,一些不规则的图形的面积可以转化为规则图形的面积的和或差求解.2、(2011•衡阳)如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD的长.考点:切线的判定与性质;勾股定理;垂径定理;圆周角定理。专题:综合题。分析:(1)连接OC,证明OC⊥DC,利用经过半径的外端且垂直于半径的直线是圆的切线判定切线即可;(2)利用等弧所对的圆心角相等和题目中的已知角得到∠D=30°,利用解直角三角形求得CD的长即可.解答:解:(1)CD与⊙O相切;证明:连接OC,∵CA=CB,∴𝐴𝐶̂=𝐶𝐵̂∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,∴CD与⊙O相切.(2)∵CA=CB,∠ACB=120°,∴∠DOC=60°∴∠D=30°,∵OA=2,∴OC=2∴CD=√𝐷𝑂2﹣𝑂𝐶2=2√3点评:本题考查常见的几何题型,包括切线的判定,角的大小及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.3、(2011•杭州)在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.考点:正多边形和圆;等边三角形的性质;平移的性质。专题:计算题。分析:(1)取出⑤,观察图象,根据图象进行平移即可;(2)可以做到.先求出每个等边三角形的面积𝑆1=√34,得到正六边形的面积为3√32,根据3√32﹣52覆盖住正六边形即可.解答:解:(1)取出⑤,向上平移2个单位;答:取出的是三角形⑤,平移的方向向上平移,平移的距离是2个单位.(2)解:可以做到.理由是:∵每个等边三角形的面积是𝑆1=√34,∴正六边形的面积为𝑆6=6𝑆1=3√32>52,而0<𝑆6﹣52=3√32﹣52<√34=𝑆1,∴只需用⑤的(3√32﹣52)面积覆盖住正六边形就能做到.点评:本题主要考查对正多边形与圆,等边三角形的性质,平移的性质等知识点的理解和掌握,能根据题意进行计算是解此题的关键.4、(2011•杭州)在△ABC中,AB=√3,AC=√2,BC=1.(1)求证:∠A≠30°;(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.考点:圆锥的计算;勾股定理;解直角三角形。专题:计算题;证明题。分析:(1)根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=Rt∠,利用三角函数计算出sinA,然后与sin30°进行比较即可判断∠A≠30°;(2)将△ABC绕BC所在直线旋转一周,所得的几何体为圆锥,圆锥的底面圆的半径为AC,母线长为AB,所得几何体的表面积分为底面积和侧面积,分别根据圆的面积公式和扇形的面积公式进行计算即可.解答:解:(1)∵BC2+AC2=1+2=3=AB2,∴△ABC是直角三角形,且∠C=Rt∠.∵𝑠𝑖𝑛𝐴=𝐵𝐶𝐴𝐵=1√3>12=𝑠𝑖𝑛30°,∴∠A≠30°.(2)将△ABC绕BC所在直线旋转一周,所得的几何体为圆锥,∴圆锥的底面圆的半径=√2,∴圆锥的底面圆的周长=2π•√2=2√2π;母线长为√3,∴几何体的表面积√2×√3π+π×(√2)2=√6π+2π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,它的弧长为圆锥的底面圆的周长,扇形的半径为母线长,圆锥的侧面积=扇形的面积=12l•R(l为弧长,R为扇形的半径);也考查了勾股定理的逆定理以及特殊角的三角函数值.5、(2011•贵阳)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是5.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)考点:切线的性质;平行四边形的性质;扇形面积的计算。分析:(1)连接OE,则OE的长就是所求的量;(2)阴影部分的面积等于梯形OADE的面积与扇形OAE的面积的差.解答:解(1)连接OE.∵边CD切⊙O于点E.∴OE⊥CD则OE就是圆心O到CD的距离,则圆心O到CD的距离是12×AB=5.故答案是:5;(2)∵四边形ABCD是平行四边.∴∠C=∠DAB=180°﹣∠ABC=120°,∴∠BOE=360°﹣90°﹣60°﹣120°=90°,∴∠AOE=90°,作EF∥CB,∴∠OFE=∠ABC=60°,∴OF=5√33.EC=BF=5﹣5√33.则DE=10﹣5+5√33=5+5√33,则直角梯形OADE的面积是:12(OA+DE)×OE=12(5+5+5√33)×5=25+25√36.扇形OAE的面积是:90𝜋×52360=25𝜋4.则阴影部分的面积是:25+25√36﹣25𝜋4.点评:本题主要考查了扇形的面积的计算,正确作出辅助线,把阴影部分的面积转化为梯形OADE的面积与扇形OAE的面积的差是解题的关键.6、(2011•抚顺)如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.(1)求证:CF为⊙O的切线.(2)若半径ON⊥AD于点M,CE=√3,求图中阴影部分的面积.考点:切线的判定;扇形面积的计算。专题:计算题。分析:(1)由CD垂直平分OB,得到E为OB的中点,且CD与OB垂直,又OB=OC,可得OE等于OC的一半,在直角三角形OEC中,根据锐角三角函数的定义,得到sin∠ECO的值为12,可得∠ECO为30°,进而得到∠EOC为60°,又∠CFO为30°,可得∠OCE为直角,由OC为圆O的半径,可得CF为圆的切线;(2)由(1)得出的∠COF=60°,根据对称性可得∠EOD为60°,进而得到∠DOA=120°,由OA=OD,且OM与AD垂直,根据“三线合一”得到∠DOM为60°,在直角三角形OCE中,由CE的长及∠ECO=30°,可求出半径OC的长,又在直角三角形OMD中,由∠MDO=30°,半径OD=2,可求出MD及OM的长,然后利用扇形ODN的面积减去三角形ODM的面积即可求出阴影部分的面积.解答:解:(1)∵CD垂直平分OB,∴OE=12OB,∠CEO=90°,∵OB=OC,∴OE=12OC,在Rt△COE中,sin∠ECO=𝐸𝑂𝑂𝐶=12,∴∠ECO=30°,∴∠EOC=60°,∵∠CFO=30°,∴∠OCE=90°,又OC是⊙O的半径,∴CF是⊙O的切线;(2)由(1)可得∠COF=60°,由圆的轴对称性可得∠EOD=60°,∴∠DOA=120°,∵OM⊥AD,OA=OD,∴∠DOM=60°.在Rt△COE中,CE=√3,∠ECO=30°,cos∠ECO=𝐸𝐶𝑂𝐶,∴OC=2,在Rt△ODM中,OD=2,∠ADO=30°,∴OM=ODsin30°=1,MD=ODcos30°=√3,∴S扇形OND=60𝜋×22360=23π,∴S△OMD=12OM•DM=√32,∴S阴影=S扇形OND﹣S△OMD=23π﹣√32.点评:此题考查了切线的判定,直角三角形的性质,锐角三角形函数定义,等腰三角形的性质,以及直角三角形和扇形面积的公式,切线的判定方法为:有点连接证垂直;无点作垂线,证明垂线段长等于半径.对于不规则图形的面积的求法,可利用转化的思想,把不规则图形的面积化为规则图形来求,例如本题就是用扇形的面积减去直角三角形的面积得到阴影部分面积的.7、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=12∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=√55,求BC和BF的长.考点:切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形。专题:证明题;综合题。分析:(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABE=90°.(2)利用已知条件证得∴△AGC∽△BFA,利用比例式求得线段的长即可.解答:(1)证
本文标题:九年级-有关圆的中考题汇编(含答案)
链接地址:https://www.777doc.com/doc-1430803 .html