您好,欢迎访问三七文档
一、勾股定理在生活中的应用1、理解问题实质,能够从生活问题中转化为几何图形关系。如图4,长方体的长为15cm,宽为10cm,高为20cm,点B距点C5cm,一只蚂蚁如果要沿着长方体表面从点A爬到点B,需要爬行的最短路程是多少?2、弄清方位角知识,在航海、测绘等问题中使用。如图,一艘船以6海里/小时的速度从港口A出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距3、利用勾股定理,测量物体高度。如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为1.6m,那么这棵树的高度大约为4、利用勾股定理,选择最优方案。在高5m,长13m的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要m.二.特殊几何图形中勾股定理计算规律:等腰直角三角形。(1)斜边中线等于斜边一半并且是特殊的三线合一。(2)斜边是直角边的2倍。例题1如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6B.8C.10D.12图4BCA图5BA图6AABB例题2如图所示,铁路上有A、B两点(看做直线上两点)相距40千米,C、D为两村庄(看做两个点),AD⊥AB,BC垂直AB,垂足分别为A、B,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈,使得C、D两村到煤栈的距离相等,问煤栈应建在距A点多少千米处?联系生活的应用实例:如图,公路AB和公路CD在点P处交会,且∠APC=45°,点Q处有一所小学,PQ=1202m,假设拖拉机行驶时,周围130m以内会受到噪声的影响,那么拖拉机在公路AB上沿PA方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为36km/h,那么学校受影响的时间为多少秒?根据实际情况分类讨论实例:为美化小区环境,某小区有一块面积为30平方米的等腰三角形草地,测得其一边长为10米.现要给这块三角形草地围上白色的低矮栅栏,现在准备这种低矮栅栏的长度分别有以下三种:①10+261米;②20+210米;③20+610米,则符合要求的是()A.只有①②B.只有①③C.只有②③D.①②③一、选择题1、一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.183海里/小时C.36海里/小时D.36海里/小时2如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13*3如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A.6B.7C.8D.9*4下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为10;②直角三角形的最大边长为3,最短边长为1,则另一边长为2;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是()A.只有①②③B.只有①②④C.只有③④D.只有②③④**5、如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=2AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是()A.①②③④B.只有①②③C.只有①③④D.只有②④二、填空题:*6第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你计算OA9的长.*7如图,在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了180m到达B地,再沿北偏东30°方向走,恰能到达目的地C,那么,由此可知,B、C两地相距m.**8如图,四边形ABCD、EFGH、NHMC都是正方形,A、B、N、E、F五点在同一直线上,且正方形ABCD、EFGH面积分别是4和9,则正方形NHMC的面积是.**9我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt△ABC是奇异三角形,在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,其中,a=1,那么b=.三、解答题:*10如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上.已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?*11在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向.在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处.这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图).假设距恐怖分子100米以外为安全位置.(1)乙队员是否处于安全位置?为什么?(2)因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置.为此,乙队员至少应用多快的速度撤离?(结果精确到个位.参考数据:13≈3.6,14≈3.74.)**12如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?13如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=√,则BC的长为14如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是15如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于16正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为在△ABC中,AB=2√,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为17已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD18如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长
本文标题:勾股定理实际应用
链接地址:https://www.777doc.com/doc-1431084 .html