您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第二十一章一元二次方程复习课.
一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用方程两边都是整式ax²+bx+c=0(a0)只含有一个未知数求知数的最高次数是2配方法求根公式法直接开平方法因式分解法224204bbacbxcaa当时,000ABAB化成或20xmmxm化成二次项系数为1,而一次项系数为偶数200axbxca化成一般形式一元二次方程的概念:1.下列方程中是一元二次方程的是()A、2x+1=0B、y2+x=1C、x2+1=0D、1xx12C2.关于x的方程是一元二次方程,求m的值。073)2(22xxmm一元二次方程三要素:1.一个未知数.2.含未知项的最高次数是2次.3.方程两边都是整式.二次项的系数不等于0.注意:m=-2一、一元二次方程的概念引例:判断下列方程是不是一元二次方程(1)4x-x²+=0(2)3x²-y-1=0(3)ax²+bx+c=0(4)x+=0注意:一元二次方程的三个要素1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m时是一元二次方程,当m=时是一元一次方程。2、若(m+2)x2+(m-2)x-2=0是关于x的一元二次方程则m。是不是不是≠±1≠-2-1213不一定x13.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k5一元二次方程(关于x)一般形式二次项系数一次项系数常数项3x²-1=03x(x-2)=2(x-2)用适当的方法解下列方程24310xx2130xx22(21)90x2341xx2130xx因式分解法:1.用因式分解法的条件是:方程左边能够分解为两个因式的积,而右边等于0的方程;2.形如:ax2+bx=o(即常数C=0).因式分解法的一般步骤:一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;22(21)90x直接开平方法:1.用开平方法的条件是:缺少一次项的一元二次方程,用开平方法比较方便;2.形如:ax2+c=o(即没有一次项).a(x+m)2=k2341xx配方法:用配方法的条件是:适应于任何一个一元二次方程,但是在没有特别要求的情况下,除了形如x2+2kx+c=0用配方法外,一般不用;(即二次项系数为1,一次项系数是偶数。)配方法的一般步骤:一除----把二次项系数化为1(方程的两边同时除以二次项系数a)二移----把常数项移到方程的右边;三配----把方程的左边配成一个完全平方式;四开----利用开平方法求出原方程的两个解.★一除、二移、三配、四开、五解.公式法:用公式法的条件是:适应于任何一个一元二次方程,先将方程化为一般形式,再求出b2-4ac的值,b2-4ac≥0则方程有实数根,b2-4ac0则方程无实数根;方程根的情况与b2-4ac的值的关系:24310xx242bbacxa当b2-4ac0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac0时,方程没有实数根.公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)练习:一元二次方程的解法1、请你选择最恰当的方法解下列一元二次方程(1)、3x2-5x=0(2)、3x²-1=0(3)x(2x+3)=5(2x+3)(4)3(x-2)2=9(5)、x²-3x+2=0(6)22132yy293033622aaxxa的一个根,则是方程、若mnnnmxxn),则一个根(是方程、0072形式,则的)请用配方法转化成(、nmxxx22,02489、请写出一个一元二次方程,它的根为-1和211-12)2(2x(x+1)(x-2)=0一元二次方程根的判别式acb42002acbxax042acb000两不相等实根两相等实根无实根一元二次方程一元二次方程根的判式是:002acbxax判别式的情况根的情况定理与逆定理042acb042acb两个不相等实根两个相等实根无实根(无解)三、例1:不解方程,判别下列方程的根的情况(1)04322xx(3)07152xx(2)yy2491620414243422acb解:(1)=判别式的应用:所以,原方程有两个不相等的实根。说明:解这类题目时,一般要先把方程化为一般形式,求出△,然后对△进行计算,使△的符号明朗化,进而说明△的符号情况,得出结论。1、不解方程,判别方程的根的情况一元二次方程的应用:面积类应用题:1.(09年甘肃庆阳)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米A面积类应用题:2.(08十堰)如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?BADC墙3.在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?增长率类应用题:3.(09兰州)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148;B.200(1-a%)2=148;C.200(1-2a%)=148;D.200(1+a2%)=148;B2.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围ABCPQ(1)用含x的代数式表示BQ、PB的长度;(2)当X为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由。其它类型应用题:4.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止。连结PQ。设动点运动时间为x秒。你说我说大家说请你谈谈学习本节课后的感受!
本文标题:第二十一章一元二次方程复习课.
链接地址:https://www.777doc.com/doc-1440679 .html