您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 《极值点偏移问题的处理策略及探究》
1极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。若函数()fx在0xx处取得极值,且函数()yfx与直线yb交于1(,)Axb,2(,)Bxb两点,则AB的中点为12(,)2xxMb,而往往1202xxx.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索!【问题特征】【处理策略】2一、不含参数的问题.例1.(2010天津理)已知函数()()xfxxexR,如果12xx,且12()()fxfx,证明:122.xx【解析】法一:()(1)xfxxe,易得()fx在(,1)上单调递增,在(1,)上单调递减,x时,()fx,(0)0f,x时,()0fx,函数()fx在1x处取得极大值(1)f,且1(1)fe,如图所示.由1212()(),fxfxxx,不妨设12xx,则必有1201xx,构造函数()(1)(1),(0,1]Fxfxfxx,则21()(1)(1)(1)0xxxFxfxfxee,所以()Fx在(0,1]x上单调递增,()(0)0FxF,也即(1)(1)fxfx对(0,1]x恒成立.由1201xx,则11(0,1]x,所以11112(1(1))(2)(1(1))()()fxfxfxfxfx,即12(2)()fxfx,又因为122,(1,)xx,且()fx在(1,)上单调递减,所以122xx,即证122.xx法二:欲证122xx,即证212xx,由法一知1201xx,故122,(1,)xx,又因为()fx在(1,)上单调递减,故只需证21()(2)fxfx,又因为12()()fxfx,故也即证11()(2)fxfx,构造函数()()(2),(0,1)Hxfxfxx,则等价于证明()0Hx对(0,1)x恒成立.由221()()(2)(1)0xxxHxfxfxee,则()Hx在(0,1)x上单调递增,所以()(1)0HxH,即已证明()0Hx对(0,1)x恒成立,故原不等式122xx亦成立.法三:由12()()fxfx,得1212xxxexe,化简得2121xxxex…,3不妨设21xx,由法一知,121oxx.令21txx,则210,txtx,代入式,得11ttxex,反解出11ttxe,则121221ttxxxtte,故要证:122xx,即证:221ttte,又因为10te,等价于证明:2(2)(1)0ttte…,构造函数()2(2)(1),(0)tGtttet,则()(1)1,()0ttGtteGtte,故()Gt在(0,)t上单调递增,()(0)0GtG,从而()Gt也在(0,)t上单调递增,()(0)0GtG,即证式成立,也即原不等式122xx成立.法四:由法三中式,两边同时取以e为底的对数,得221211lnlnlnxxxxxx,也即2121lnln1xxxx,从而221212121212221211111lnln()lnln1xxxxxxxxxxxxxxxxxxxx,令21(1)xttx,则欲证:122xx,等价于证明:1ln21ttt…,构造(1)ln2()(1)ln,(1)11ttMttttt,则2212ln()(1)tttMttt,又令2()12ln,(1)ttttt,则()22(ln1)2(1ln)ttttt,由于1lntt对(1,)t恒成立,故()0t,()t在(1,)t上单调递增,所以()(1)0t,从而()0Mt,故()Mt在(1,)t上单调递增,由洛比塔法则知:1111(1)ln((1)ln)1lim()limlimlim(ln)21(1)xxxxtttttMttttt,即证()2Mt,即证式成立,也即原不等式122xx成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.二、含参数的问题.例2.已知函数xaexxf)(有两个不同的零点12,xx,求证:221xx.4【解析】思路1:函数()fx的两个零点,等价于方程xxea的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a这个媒介去构造出新的函数.解答如下:因为函数()fx有两个零点12,xx,所以)2()1(2121xxaexaex,由)2()1(得:)(2121xxeeaxx,要证明122xx,只要证明12()2xxaee,由)2()1(得:1212()xxxxaee,即1212xxxxaee,即证:121212()2xxxxeexxee211)(212121xxxxeexx,不妨设12xx,记12txx,则0,1tte,因此只要证明:121ttete01)1(2tteet,再次换元令xtxetln,1,即证2(1)ln0(1,)1xxxx构造新函数2(1)()ln1xFxxx,0)1(F求导2'2214(1)()0(1)(1)xFxxxxx,得)(xF在),1(递增,所以0)(xF,因此原不等式122xx获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,xx的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。例3.已知函数()lnfxxax,a为常数,若函数()fx有两个零点12,xx,试证明:212.xxe【解析】法一:消参转化成无参数问题:ln()0lnlnxfxxaxxae,12,xx是方程()0fx的两根,也是方程lnlnxxae的两根,则12ln,lnxx是xxae,设1122ln,lnuxux,()xgxxe,则12()()gugu,从而2121212lnln22xxexxuu,此问题等价转化成为例1,下略.法二:利用参数a作为媒介,换元后构造新函数:不妨设12xx,5∵1122ln0,ln0xaxxax,∴12121212lnln(),lnln()xxaxxxxaxx,∴1212lnlnxxaxx,欲证明212xxe,即证12lnln2xx.∵1212lnln()xxaxx,∴即证122axx,∴原命题等价于证明121212lnln2xxxxxx,即证:1122122()lnxxxxxx,令12,(1)xttx,构造2(1)ln,1)1(ttgttt,此问题等价转化成为例2中思路二的解答,下略.法三:直接换元构造新函数:12221211lnlnln,lnxxxxaxxxx设2121,,(1)xxxttx,则112111lnlnln,lnlntxtxxtxttxx,反解出:1211lnlnlnln,lnlnlnlnln111ttttxxtxtxtttt,故212121lnln2ln21txxexxtt,转化成法二,下同,略.例4.设函数()()xfxeaxaaR,其图像与x轴交于)0,(,)0,(21xBxA两点,且21xx.证明:12()0fxx.【解析】由(),()xxfxeaxafxea,易知:a的取值范围为2(,)e,()fx在(,ln)a上单调递减,在(ln,)a上单调递增.法一:利用通法构造新函数,略;法二:将旧变元转换成新变元:∵12120,0,xxeaxaeaxa两式相减得:2121xxeeaxx,记21,(0)2xxtt,则121221212221()(2())22xxxxxxttxxeeefeteexxt,设()2(),(0)ttgtteet,则()2()0ttgtee,所以()gt在(0,)t上单6调递减,故()(0)0gtg,而12202xxet,所以12()02xxf,又∵()xfxea是R上的递增函数,且12122xxxx,∴0)(21xxf.容易想到,但却是错解的过程:欲证:0)(21xxf,即要证:12()02xxf,亦要证1220xxea,也即证:122xxea,很自然会想到:对112211220,(1),0,(1),xxxxeaxaeaxeaxaeax两式相乘得:12212(1)(1)xxeaxx,即证:12(1)(1)1xx.考虑用基本不等式212122(1)(1)()2xxxx,也即只要证:124xx.由于121,lnxxa.当取3ae将得到23x,从而124xx.而二元一次不等式124xx对任意2(,)ae不恒成立,故此法错误.【迷惑】此题为什么两式相减能奏效,而变式相乘却失败?两式相减的思想基础是什么?其他题是否也可以效仿这两式相减的思路?【解决】此题及很多类似的问题,都有着深刻的高等数学背景.拉格朗日中值定理:若函数()fx满足如下条件:(1)函数在闭区间[,]ab上连续;(2)函数在开区间(,)ab内可导,则在(,)ab内至少存在一点,使得()()()fbfafba.当()()fbfa时,即得到罗尔中值定理.上述问题即对应于罗尔中值定理,设函数图像与x轴交于12(,0),(,0),AxBx两点,因此21211221()()(e)()0002xxABfxfxeaxxkxx,∴2121xxeeaxx,……由于12()()0fxfx,显然11()()0fxfx与11()()0fxfx,与已知12()()0fxfx不是充要关系,转化的过程中范围发生了改变.例5.(11年,辽宁理)已知函数2()ln(2).fxxaxax7(I)讨论()fx的单调性;(II)设0a,证明:当10xa时,11()()fxfxaa;(III)若函数()yfx的图像与x轴交于,AB两点,线段AB中点的横坐标为0x,证明:0()0fx.【解析】(I)易得:当0a时,()fx在(0,)上单调递增;当0a时,()fx在1(0,)a上单调递增,在1(,)a上单调递减.(II)法一:构造函数111()()(),(0)gxfxfxxaaa,利用函数单调性证明,方法上同,略;法二:构造以a为主元的函数,设函数11()()()hafxfxaa,则()ln(1)ln(1)2haaxaxax,32222()2111xxxahaxaxaxa
本文标题:《极值点偏移问题的处理策略及探究》
链接地址:https://www.777doc.com/doc-1443478 .html