您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 全等三角形之动点类型试题和答案
1全等三角形之动点问题(综合测试)1、如图,在直角三角形ABC中,∠B=90°,AB=5cm,BC=6cm,点P从点B开始沿BA以1cm/s的速度向点A运动,同时,点Q从点B开始沿BC以2cm/s的速度向点C运动.几秒后,△PBQ的面积为9cm2?第1题图第2题图第3题图2、如图所示,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1m/s,点Q运动的速度是2m/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为ts,解答下列问题:(1)填空:△ABC的面积为(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(4)当△BPQ是直角三角形时,求t的值3、如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.4、如图,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F,问:点P运动多少时间时,△PEC与QFC全等?请说明理由。5、如图,已知三角形ABC中,AB=AC=24厘米,BC=16,点D为AB的中点,如果点P在线段BC上从4厘米/秒的速度由B向C运动,同时,点Q在线段CA上由C向A运动,当Q的运动速度为多少厘米/秒时,能在某一时刻使三角形BPD与三角形CQP全等.第4题图第5题图第6题图6、如图,在长方形ABCD中,BC=8cm,AC=10cm,动点P以2cm/s的速度从点A出发,沿AC方向向点C运动,同时动点Q以1cm/s的速度从点C出发,沿CB方向向点B运动,当P,Q两点中其中一点到达终点时,两点同时停止运动,连接PQ.设点P的运动时间为t秒,当t为()时,△PQC是以PQ为底的等腰三角形.7、已知:如图,在△ABC中,AB=AC=18,BC=12,点D为AB的中点.点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时点Q在线段CA上以每秒a个单位的速度由C点向A点匀速运动,连接DP,QP.设点P的运动时间为t秒,解答下列问题:(1)根据点P的运动,对应的t的取值范围为()A.B.C.D.(2)若某一时刻△BPD与△CQP全等,则t的值与相应的CQ的长为()A.t=2,CQ=9B.t=1,CQ=3或t=2,CQ=9C.t=1,CQ=3或t=2,CQ=6D.t=1,CQ=3(3)若某一时刻△BPD≌△CPQ,则a=()A.B.2C.3D.2答案:1、略2、(1)当点Q到达点C时,PQ与AB垂直,即△BPQ为直角三角形.理由是:∵AB=AC=BC=6cm,∴当点Q到达点C时,BP=3cm,∴点P为AB的中点.∴QP⊥BA(等边三角形三线合一的性质).(2)假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,∴BP=PQ=BQ,∴6-t=2t,解得t=2.∴当t=2时,△BPQ是个等边三角形.3、(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等考点:全等三角形的判定与性质4、解:∵△PEC与QFC全等,∴斜边CP=CQ,有三种情况:①P在AC上,Q在BC上,CP=6-t,CQ=8-3t,∴6-t=8-3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6-t=3t-8,∴t=3.5;③Q在AC上,P在BC上,CQ=CP,3t-8=t-6,∴t=1,AC+CP=12,答:点P运动1或3.5或12时,△PEC与QFC全等。5、答案:4cm/s或6cm/s设点Q的运动速度为xcm/s,在t时刻三角形BPD与三角形CQP全等∵∠B=∠C∴△BPD≌△CQP或∴△BPD≌△CPQ∵BC=16cm,CP=BD=12cm∴BP=BC-CP=4cm=CQ=xt∵BP=4t=4∴t=1(s)∴x=4cm/s3同理:当,△BPD≌△CPQCQ=BD=12cmBP=CP=8cm=4t∴t=2(s)∴x=CQ/t=12/2=6cm/s6、7、
本文标题:全等三角形之动点类型试题和答案
链接地址:https://www.777doc.com/doc-1449085 .html