您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 三角形辅助线拓展习题一
全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于E使DN=MD,连接BE连接CD1.(全等)如图,点E是BC中点,CDEBAE,求证:CDAB2.(全等)如图,在ABC中,ABCD,BDABAD,AE是BD边的中线.求证:AEAC2DABCEDABCFEDCBANDCBAM3.(全等)如图,在ABC中,AD平分BAC,G为BC的中点,ADEG//交CA延长线于E.求证:ECBF4.(全等)如图,等腰直角ABC与等腰直角BDE,P为CE中点,连接PA、PD.探究PA、PD的关系.7.如图1,正方形ABCD中,对角线AC、BD交于点O.⑴操作:将三角板中的90角的顶点与点O重合,使这个角落在ABC的内部,两边分别与正方形ABCD的边AB、BC交于F、E.当F、E的位置发生变化时,请你通过测量并回答,每组AF、FE、EC三条线段中,哪一条线段是中始终最长.⑵以AF、FE、EC这三条线段能否组成以FE为斜边的直角三角形?若能,请你证明;若不能,请你说明理由.⑶探究:如图2,ABC,90B,点O是斜线AC的中点,当90角的顶点与点O重合,使这个角在ABC的内部绕点O转动时,⑵中的结论是否仍然成立?请你证明.二、截长补短截长补短法遇到求证一条线段等于另两条线段之和,一般方法是截长法或补短法截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。(截长为两短,一段为一短,另一证全等,补短与长等,还是用全等)截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等补短法:(1)延长短边。(2)通过旋转使两短边拼合到一起。这种作法,适合于证明线段的和、差、倍、分等类的题目。板块一、截长补短【例1】已知ABC中,60A,BD、CE分别平分ABC和.ACB,BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明.【例2】如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作60DMN,射线MN与DBA∠外角的平分线交于点N,DM与MN有怎样的数量关系?【例3】如图2-9所示.已知正方形ABCD中,M为CD的中点,E为MC上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.NEBMADDOECBA分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和(BCCE),再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段(AE)上截取与线段中的某一段(如BC)相等的线段,再证明截剩的部分与线段中的另一段(CE)相等【例4】已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.【例5】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDECEDBAABDEFC【例6】如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.变形:在等边ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且60MDN,120BDC,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及AMN的周长Q与等边ABC的周长L的关系.FEDCBANMDCBA图1图2图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时LQ;(II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q=(用x、L表示).板块二、全等与角度【例7】如图,在ABC中,60BAC,AD是BAC的平分线,且ACABBD,求ABC的度数.由已知条件可以想到将折线ABD“拉直”成AE,利用角平分线AD可以构造全等三角形.同样地,将AC拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想.上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考虑的方法.【例8】在正ABC内取一点D,使DADB,在ABC外取一点E,使DBEDBC,且BEBA,求BED.DCBADECBA借助角平分线造全等几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.1.显“距离”,用性质很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)例:三角形的三条角平分线交于一点,你知道这是为什么吗?分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.已知:如图,△ABC的角平分线AD与BE交于点I,求证:点I在∠ACB的平分线上.【例2】已知:如图,PA、PC分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P,PD⊥BM于D,PF⊥BN于F.求证:BP为∠MBN的平分线.【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证..2.构距离,造全等有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB上确定一点E使△BDE的周长等于AB的长.请说明理由.DCBAEHIFG2DCBA35EF14例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.3.巧翻折,造全等以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD垂直于∠ABC的平分线BD于D,BD交AC于E,求证:BE=2CD.分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.例6.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.【分析】要证明两条线段的和与一条线段相等时常用的两种方法.1.可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等.(割)2.把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等.(补)DCABE34DCAB65(1)FE1234DCAB65(2)EF12
本文标题:三角形辅助线拓展习题一
链接地址:https://www.777doc.com/doc-1449089 .html