您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 恰当运用放缩法--巧证导数不等式
450000...、1fx=lnx+1+x+槡1-1.0<x<2fx<9xx+6.x>02x+1×槡1<x+2x+槡1<x2+1∴fx=lnx+1+x+槡1-1<lnx+1+x2.hx=lnx+1+x2-9xx+6h'x=1x+1+12-54x+62=xx2+15x-362x+1x+62.0<x<2h'x<0hx02hx<h0=0lnx+1+x2<9xx+6.fx<9xx+6.hx=fx-9xx+6hxh'xh'xx+槡1.x+槡1<x2+1y=x+槡1y=x2+1y=x+槡101.“”.、2fx=ex-lnx+m.m≤2fx>0.1fx-m+∞f'x=ex-1x+m=x+mex-1x+m.gx=x+mex-1g'x=x+m+1ex>0gx-m+∞.g-m=-1<0g2-m=2e2-m-1>2×1-1>0gx=0-m+∞x0.x∈-mx0gx<0f'x<0x∈x0+∞gx>0f'x>0fxfx0.gx0=0ex0=1x0+mlnx0+m=-x0fx0=1x0+m+x0=1x0+m+x0+m-m·81·2017≥2-m≥0.x0+m=1ex0=1x0+mm=2fx0>0fx>0.2y=lnxm≤2lnx+2≥lnx+mm=2fx>0.m=2f'x=ex-1x+2-2+∞.f'-1<0f'0>0f'x=0-2+∞x0x0∈-10.x∈-2x0f'x<0x∈x0+∞f'x>0fxfx0.f'x=0ex0=1x0+2lnx0+2=-x0fx≥fx0=1x0+2+x0=x0+12x0+2>0.m≤2fx>0..1mgxfxfx02y=lnx..、ex≥x+1x∈Rlnx≤x-1x>0.A2-2P32.32014fx=aexlnx+bex-1xy=fxty=ex-1+2.1ab2fx>1.1a=1b=2.2.2.ex≥x+1ex-1≥xex≥ex1ex≥e-x.①x=1.ex-1≥x1x≥e1-xe1-1ex≤exlnex≥1-1exlnx+1ex≥0②x=1e.①、②lnx+2ex>e-xexfx>1.ex≥x+1.42016fx=ax-lnx+2x-1x2a∈R.1fx2a=1fx>f'x+32x∈12.1.2fx0+∞f'x=a-ax-2x2+2x3.a=1fx-f'x=x-lnx+3x·91·7+1x2-2x3-1x∈12.lnx≤x-1x=1fx-f'x≥3x+1x2-2x3x∈123x+1x2-2x3≥32x∈12.hx=3x+1x2-2x3x∈12h'x=-3x2-2x+6x4.φx=-3x2-2x+6φx12φ1=1φ2=-1012x0x∈1x0φx>0x∈x02φx<0hx1x0x02.h1=2h2=32x∈12hx≥h2=32x=2.fx-f'x>h2=32fx>f'x+32x∈12.fx-f'x=x-lnx+3x+1x2-2x3-1>32lnx.lnx≤x-1.e-x≥1-xx∈Re-x≤1x+1x>-1ln1x≤1x-1x>0lnxx≤1-1xx>0.、52016fx=lnx-x+1.1x∈1+∞1<x-1lnx<x2c>1x∈011+c-1x>cx.1x∈1+∞lnx<x-1ln1x<1x-11<x-1lnx<x.2gx=1+c-1x-cxg'x=c-1-cxlnc.g'x=0x0=lnc-1lnclnc.x<x0g'x>0gxx>x0g'x<0gx11<c-1lnc<c0<x0<1.g0=g1=00<x<1gx>0x∈011+c-1x>cx.21x00<x0<1gx0<x<1g0=g1=0gx>0.“”“”.、...·02·2017
本文标题:恰当运用放缩法--巧证导数不等式
链接地址:https://www.777doc.com/doc-1449834 .html