您好,欢迎访问三七文档
概率论与数理统计练习题(1)详细解答1.填空题(1)10,11,;(2)ABC;(3)ABC或_______ABC;(4)ABACBC;(5)1112;(6)35;(7)189625;(8)!nnn;(9)120;(10)47!.2.选择题(1)C;(2)B;(3)A.3.解:由于()0PAB,所以()()()()()()()()PABCPAPBPCPABPACPBCPABC1111544488.4.解:由于()()()()PABPAPBPAB,所以(1)当()0.7PAB时,()PAB取最大值0.6;(2)当()1PAB时,()PAB取最小值0.3.5.解:令A{第二车间在工会委员会中有代表},B{每个车间在工会委员会中都有代表},则(1)10181020()1CPAC;(2)1010202()PBC.6.解:令iA{杯子中球的最大个数为i},34136()416APA211343239()416CAAPA14331()416APA概率论与数理统计练习题(2)详细解答1.填空题(1)0.98;(2)221;(3)0.3456;(4)0.9;(5)175256;(6)14.(7)142.选择题(1)A;(2)D;(3)C.3.解:令1B{取到的产品是甲机床加工的},2B{取到的产品是乙机床加工的},3B{取到的产品是丙机床加工的},A{取得优质品}.则112233()()(|)()(|)()(|)PAPBPABPBPABPBPAB0.50.80.30.850.20.90.835.4.解:令H{原发信息是A},C{收到的信息是A},则20.98()(|)1963(|)0.99521()(|)()(|)1970.980.0133PHPCHPHCPHPCHPHPCH.5.解:令A{飞机被击落},iB{恰有i人击中飞机},0,1,2,3i,则0()0.60.50.30.09PB,1()0.40.50.30.60.50.30.60.50.70.36PB,2()0.60.50.70.40.50.70.40.50.30.41PB,3()0.40.50.70.14PB.从而30()()(|)0.0900.360.20.410.60.1410.458iiiPAPBPAB.6.解:令A随机选一人是女性,A随机选一人是男性()(0.5PAPA)C随机选一人恰好是色盲由全概率公式得:()()()()()PCPAPCAPAPCA0.50.00250.50.050.02625由贝叶斯公式:()()()()()()PAPCAPACPACPCPC0.50.050.95240.026257.解:令iA第i次考试及格,112121()0.5,()0.5,()0.5,()0.25PAPAPAAPAA(1)则1212()1()PAAPAA1211()[1()PAPAA1(10.5)(10.25)35188(2)12112122121121()()()()()()()()()PAPAAPAAPAAPAPAPAAPAPAA0.50.520.50.50.50.253概率论与数理统计练习题(3)详细解答1.填空题(1)2;(2)X-113kp0.40.40.2(3)0,1,0.2,12,()0.5,23,1,3.xxFxxx2.选择题(1)D;(2)B;(3)D.3.解:21,XX的分布律分别为1X23456789101112kp3613623633643653663653643633623612X123456kp36113693673653633614.解:X表示汽车首次遇到红灯前已通过的路口数,其可能取值为0,1,2,3,则21}0{XP,412121}1{XP,81212121}2{XP,81212121}3{XP.5.解:(1)123121}{nnXP偶数;(2)516121}5{nnXP;(3)137121}3{}3{nnnXPXP的倍数为.6.X012kp22351235135概率论与数理统计练习题(4)详细解答1.填空题(1)649;(2)9876.0;(3)21ee;(4)21.(5)3;(6)0.62.选择题(1)D;(2)D;(3)A.3.解:(1)101.1108117.6108{101.1117.6}{}33PXPX(3.2)(2.3)(3.2)(2.3)10.9886.(2)由于108108108{}{}()0.9333XaaPXaP,所以1081.283a,因此111.84a.(3)由于}0{}2{}{XPaXPaaXP1{2}{0}0.01PXaPX,所以{2}0.99PXa,即1082108{}0.9933XaP,于是21082.333a,从而57.495a.4.解:(1)}40,2321{YXP=}3,2,1,1{YXP410041.(2)}43,21{YXP=}3,1{YXP+}4,1{YXP+}3,2{YXP+}4,2{YXP=1654101610.5.解:(1)由34001xykedxdy,知12k.(2)340012,0,0,(,)0,0,0yxxyedxdyxyFxyxy=34(1)(1),0,0,0,0,0.xyeexyxy(3)}20,10{YXP=20104312dydxeyx=)1)(1(83ee.6.解:65{1}72PXY概率论与数理统计练习题(5)详细解答1.填空题(1))2(arctan1x,)2(arctan1y;(2)01,0,00;yexyy(3)92,91.2.选择题(1)A;(2)C;(3)A.3.解:依题意,010.4PXp,10.6PXp,于是有110,10100.4410PXYPXPYX,110,20200.425PXYPXPYX,110,30300.4410PXYPXPYX,131,11110.6210PXYPXPYX,111,21210.6610PXYPXPYX,111,31310.635PXYPXPYX.所以(,)XY的分布律为YX1230101511011103101514.解:(1)0.5()lim(,)1(0)xXFxFxyex,0.5()lim(,)1(0)yYFyFxyey,0.50.50.50.50.5()()()(1)(1)11,0,0,xyXYxyxyFxFyeeeeexy即0.50.50.5()1,0,0;()()0,xyxyXYeeexyFxFy其它,有(,)()()XYFxyFxFy,故X和Y相互独立.(2)0.1,0.10.10.1PXYPXPY(10.1)(10.1)PXPY0.050.050.050.050.1[1(1)][1(1)]eeeee.5.解:(1)由二维随机变量的联合概率密度的性质可得:11200116AxdxydyA显然,6A(2)X的边缘概率密度为:120()62XfxxydyxY的边缘概率密度为:1220()63Yfyxydxy显然,()()(,)XYfxfyfxy,则X与Y相互独立概率论与数理统计练习题(6)详细解答1.填空题(1)22(4)y;(2)(1)0.5或0.3413;(3)11,2ab.(4)/210,200,yyey2.选择题(1)D;(2)C;(3)D;(4)B.3.解:sin2XY的可能取值为1,0,1,而1{},1,2,2kPXkk,故43012{1}215kkPY,2111{0}23kkPY,41018{1}215kkPY,则Y的分布律为Y-101kp215138154.解:由于X、Y独立,因此,01,0,(,)0,yexyfxy其它.所以2(){2}(,)ZxyzFzPXYzfxydxdy/220012000,0,,02,,2,zzxyzxyzdxedyzdxedyz即20,0,1()(1),02,211(1),2.2zZzzFzezzeez5.解:由于100,1,200,1XYX.所以1441011()10020044xxEYedxedx11144410020020030020033.64eee-(元).6.解:X的概率密度为102,()20,xfx其他长方形的面积:(10)SXX则201[(10)](10)2ESEXXxxdx426108.66733概率论与数理统计练习题(8)详细解答1.解:设(1,2,,16)iXi为第i只元件的寿命,依题设,2()100,()100iiEXDX,记161iiXX,则所求概率即为{1920}PX,16100192016100{1920}1{1920}1{}16100161001(0.8)10.78810.2119.XPXPXP所以这16只元件的寿命总和大于1920小时的概率为0.2119.2.解:设X为重量少于100公斤的生猪头数,则~(100,0.2)XB,由定理所求概率为1000.2301000.2(30)1(30)1()1000.20.81000.20.81(2.5)10.99380.0062.XPXPXP故至少有30头少于100公斤的概率是0.0062.3.解:设(1,2,,300)iXi为第i页的错误的个数,则()0.2,()0.2iiEXDX,记3001iiXX,则所求概率即为{70}PX,0.2300700.2300{70}{}(1.29)0.90153000.23000.2XPXP,即这本书错误的总数不多余70的概率为0.9015.4.解:设事件A的概率为p,令1,0,iiAX第次试验中发生,否则(1,2,,10000i),则(),()(1)iiEXpDXpp,由切比雪夫不等式有12111()11{()}1ninniiiiiDXnPXEXnn用10000,0.01n代入上述不等式得10000100001111{()0.01}1(1)1000010000iiiiPXEXpp即误差小于0.01的概率大于1(1)pp.5.解:设X为同一时刻使用外线通话的分机数,则~(200,0.05)XB。N为需要的外线数,依题意,要确定N使得{}0.9PXN,而2000.052000.0510{}{}()0.92000.050.952000.050.959.5XNNPXNP查表得:101.282,101.2829.513.959.5NN
本文标题:概率练习题详细解答
链接地址:https://www.777doc.com/doc-1450008 .html