您好,欢迎访问三七文档
第1页(共35页)角平分线练习题一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2B.3C.4D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°3.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为()第2页(共35页)A.2B.2C.2D.35.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6B.8C.10D.126.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于()A.30B.24C.15D.107.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.68.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()第3页(共35页)A.∠DBE=∠DBFB.DE=DFC.2DF=DBD.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cmB.5cmC.8cmD.20cm10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6B.12C.18D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;第4页(共35页)其中正确的是()个.A.1B.2C.3D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是()A.SASB.AAAC.SSSD.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是()A.2cmB.3cmC.4cmD.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()第5页(共35页)A.1B.2C.3D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.2个B.3个C.4个D.1个21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,第6页(共35页)则△DAB的面积为()A.12B.18C.20D.2422.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9B.8C.7D.6评卷人得分二.填空题(共13小题)23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ABC=9,则DE的长为.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.第7页(共35页)25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是.26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为.第8页(共35页)30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,若BD=2,AC=8,则△ACD的面积为.33.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果,那么.35.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:第9页(共35页)CD=9:7,则D到AB的距离为.评卷人得分三.解答题(共5小题)36.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.37.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.第10页(共35页)(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.第11页(共35页)2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2B.3C.4D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,第12页(共35页)∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.3.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选:C.4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为()第13页(共35页)A.2B.2C.2D.3【解答】解:如图,过B点作BE⊥OA于E,∵OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,BD=2,∴BE=BD=2,在直角△ABE中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.故选:C.5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6B.8C.10D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,第14页(共35页)∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于()A.30B.24C.15D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故选:C.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,第15页(共35页)∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3.故选:A.8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE=∠DBFB.DE=DFC.2DF=DBD.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cmB.5cmC.8cmD.20cm第16页(共35页)【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,故选:C.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:如图所示,加油站站的地址有四处.故选:D.第17页(共35页)12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6B.12C.18D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+
本文标题:角平分线练习题
链接地址:https://www.777doc.com/doc-1453791 .html