您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 第十三章 期权的定价
Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity第十三章期权的定价第一节期权价格的特性一、内在价值和时间价值•期权价格等于期权的内在价值加上时间价值。(一)期权的内在价值•期权的内在价值(IntrinsicValue)是指多方行使期权时可以获得的收益的现值。•欧式看涨期权的内在价值为(ST-X)的现值。无收益资产欧式看涨期权的内在价值等于S-Xe-r(T-t),而有收益资产欧式看涨期权的内在价值等于S-D-Xe-r(T-t)。•无收益资产美式看涨期权价格等于欧式看涨期权价格,其内在价值也就等于S-Xe-r(T-t)。有收益资产美式看涨期权的内在价值也等于S-D-Xe-r(T-t)。Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•无收益资产欧式看跌期权的内在价值为Xe-r(T-t)-S,有收益资产欧式看跌期权的内在价值为Xe-r(T-t)+D-S。无收益资产美式期权的内在价值等于X-S,有收益资产美式期权的内在价值等于X+D-S。•当然,当标的资产市价低于协议价格时,期权多方是不会行使期权的,因此期权的内在价值应大于等于0。Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity(二)期权的时间价值•期权的时间价值(TimeValue)是指在期权有效期内标的资产价格波动为期权持有者带来收益的可能性所隐含的价值。显然,标的资产价格的波动率越高,期权的时间价值就越大。•此外,期权的时间价值还受期权内在价值的影响。以无收益资产看涨期权为例,当S=Xe-r(T-t)时,期权的时间价值最大。当S-Xe-r(T-t)的绝对值增大时,期权的时间价值是递减的,如图13.1所示。Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversityCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity二、期权价格的影响因素(一)标的资产的市场价格与期权的协议价格(二)期权的有效期(三)标的资产价格的波动率(四)无风险利率(五)标的资产的收益Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity三、期权价格的上、下限(一)期权价格的上限1.看涨期权价格的上限•在任何情况下,期权的价值都不会超过标的资产的价格。因此,对于对于美式和欧式看跌期权来说,标的资产价格都是看涨期权价格的上限:(13.1)•其中,c代表欧式看涨期权价格,C代表美式看涨期权价格,S代表标的资产价格。cSCS和Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity2.看跌期权价格的上限•由于美式看跌期权多头执行期权的最高价值为协议价格(X),因此,美式看跌期权价格(P)的上限为X:(13.2)•由于欧式看跌期权只能在到期日(T时刻)执行,在T时刻,其最高价值为X,因此,欧式看跌期权价格(p)不能超过X的现值:(13.3)其中,r代表T时刻到期的无风险利率,t代表现在时刻。PX()rTtpXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity(二)期权价格的下限1.欧式看涨期权价格的下限(1)无收益资产欧式看涨期权价格的下限•为了推导出期权价格下限,我们考虑如下两个组合:组合A:一份欧式看涨期权加上金额为的现金;组合B:一单位标的资产•T时刻,组合A的价值为:而组合B的价值为ST。max(,)TSX()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•由于,因此,在t时刻组合A的价值也应大于等于组合B,即:c+Xe-r(T-t)≥S所以c≥S-Xe-r(T-t)•由于期权的价值一定为正,因此无收益资产欧式看涨期权价格下限为(13.4)(2)有收益资产欧式看涨期权价格的下限•我们只要将上述组合A的现金改为+D,并经过类似的推导,就可得出有收益资产欧式看涨期权价格的下限为:(13.5)()max[,0]rTtcSXemax(,)TTSXS()max[,0]rTtcSDXe()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity2.欧式看跌期权价格的下限(1)无收益资产欧式看跌期权价格的下限•考虑以下两种组合:组合C:一份欧式看跌期权加上一单位标的资产组合D:金额为的现金•在T时刻,组合C的价值为:max(ST,X)•假定组合D的现金以无风险利率投资,则在T时刻组合D的价值为X。由于组合C的价值在T时刻大于等于组合D,因此组合C的价值在t时刻也应大于等于组合D,即:()()rTtrTtpSXepXeS()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•由于期权价值一定为正,因此无收益资产欧式看跌期权价格下限为:(13.6)(2)有收益资产欧式看跌期权价格的下限•我们只要将上述组合D的现金改为+D就可得到有收益资产欧式看跌期权价格的下限为:(13.7)•从以上分析可以看出,欧式期权的下限实际上就是其内在价值。()max[,0]rTtpXeS()max[,0]rTtpDXeS()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity四、提前执行美式期权的合理性(一)提前执行无收益资产美式期权的合理性1.看涨期权•由于现金会产生收益,而提前执行看涨期权得到的标的资产无收益,再加上美式期权的时间价值总是为正的,因此我们可以直观地判断提前执行是不明智的。•为了精确地推导这个结论,我们考虑如下两个组合:组合A:一份美式看涨期权加上金额为的现金组合B:一单位标的资产•T时刻组合A的价值为max(ST,X),而组合B的价值为ST,可见组合A在T时刻的价值一定大于等于组合B。即如果不提前执行,组合A的价值一定大于等于组合B。()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•若在时刻提前执行,则此时组合A的价值为:,而组合B的价值为。由于因此即:若提前执行美式期权,组合A的价值将小于组合B。•比较两种情况可得:提前执行无收益资产美式看涨期权是不明智的。因此,同一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是相同的,即:C=c(13.8)•根据(13.4),我们可以得到无收益资产美式看涨期权价格的下限:(13.9)()rTSXXeS,0Trˆ()rTtXeX()max[,0]rTtCSXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity2.看跌期权•为考察提前执行无收益资产美式看跌期权是否合理,我们考察如下两种组合:组合A:一份美式看跌期权加上一单位标的资产组合B:金额为的现金•若不提前执行,则到T时刻,组合A的价值为max(X,ST),组合B的价值为X,组合A的价值大于等于组合B。•若在t时刻提前执行,则组合A的价值为X,组合B的价值为Xe-(T-τ),因此组合A的价值也高于组合B。()rTtXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•故:是否提前执行无收益资产的美式看跌期权,主要取决于期权的实值额(X-S)、无风险利率水平等因素。一般来说,只有当S相对于X来说较低,或者r较高时,提前执行无收益资产美式看跌期权才可能是有利的。•由于美式期权可提前执行,因此其下限比(13.6)更严格:(13.10)PXSCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity(二)提前执行有收益资产美式期权的合理性1.看涨期权•由于在无收益的情况下,不应提前执行美式看涨期权,据此可知:在有收益情况下,只有在除权前的瞬时时刻提前执行美式看涨期权方有可能是最优的。•我们先来考察在最后一个除权日(tn)提前执行的条件。如果在tn时刻提前执行,则期权多方获得Sn-X的收益。若不提前执行,则标的资产价格将由于除权降到Sn-Dn。•根据式(13.5),在tn时刻期权的价值(Cn)()max[,0]nrTtnnnnCcSDXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity•因此,如果:即:(13.11)则在tn提前执行是不明智的。•相反,如果(13.12)•则在tn提前执行有可能是合理的。实际上,只有当tn时刻标的资产价格足够大时,提前执行美式看涨期权才是合理的。•同样,在ti时刻不能提前执行有收益资产的美式看涨期权条件是:(13.13)•由于存在提前执行更有利的可能性,有收益资产的美式看涨期权价值大于等于欧式看涨期权,其下限为:•(13.14)()nrTtnnnSDXeSX()[1]nrTtnDXe()[1]nrTtnDXe1()[1]iirttiDXe()max[,0]rTtCcSDXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity2.看跌期权•由于提前执行有收益资产的美式期权意味着自己放弃收益权,因此收益使美式看跌期权提前执行的可能性变小,但还不能排除提前执行的可能性。•通过同样的分析,我们可以得出美式看跌期权不能提前执行的条件是:•由于美式看跌期权有提前执行的可能性,因此其下限为:(13.15)1()()[1][1]iinrttirTtnDXeDXemax(,0)PDXSCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity五、期权价格曲线的形状(一)看涨期权价格曲线•无收益资产看涨期权价格曲线如图13-2所示。•有收益资产看涨期权价格曲线与图13.2类似,只是把Xe-r(T-t)换成Xe-r(T-t)+D。Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity(二)看跌期权价格曲线1.欧式看跌期权价格曲线•无收益资产欧式看跌期权价格曲线如图13-3所示。图13.3无收益资产欧式看跌期权价格曲线•有收益资产期权价格曲线与图13.3相似,只是把换为()rTtXe()rTtDXeCopyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity2.美式看跌期权价格曲线•无收益资产美式看跌期权价格曲线如图13-4所示。•有收益美式看跌期权价格曲线与图13.4相似,只是把X换成D+X。Copyright©ZhenlongZheng2003,DepartmentofFinance,XiamenUniversity六、看涨期权与看跌期权之间的平价关系(一)欧式看涨期权与看跌
本文标题:第十三章 期权的定价
链接地址:https://www.777doc.com/doc-1459425 .html