您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 匀速直线运动的位移和时间的关系1
高中物理课堂教学教案年月日课题§2.3匀速直线运动的位移与时间的关系课型新授课(2课时)教学目标知识与技能1.知道匀速直线运动的位移与时间的关系.2.了解位移公式的推导方法,掌握位移公式x=vot+at2/2.3.理解匀变速直线运动的位移与时间的关系及其应用.4.理解v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.5.能推导并掌握位移与速度的关系式v2-v02=2ax.6.会适当地选用公式对匀变速直线运动的问题进行简单的分析和计算.过程与方法1.通过近似推导位移公式的过程,体验微元法的特点和技巧,能把瞬时速度的求法与此比较.2.感悟一些数学方法的应用特点.情感态度与价值观1.经历微元法推导位移公式和公式法推导速度位移关系,培养自己动手的能力,增加物理情感.2.体验成功的快乐和方法的意义,增强科学能力的价值观.教学重点、难点教学重点1.理解匀变速直线运动的位移与时间的关系x=vot+at2/2及其应用.2.理解匀变速直线运动的位移与速度的关系v2-v02=2ax及其应用.教学难点1.v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移.2.微元法推导位移时间关系式.3.匀变速直线运动的位移与时间的关系x=vot+at2/2及其灵活应用.教学方法探究、讲授、讨论、练习教学手段教具准备坐标纸、铅笔、刻度尺、多媒体课件教学活动[新课导入]师:匀变速直线运动跟我们生活的关系密切,研究匀变速直线运动很有意义.对于运动问题,人们不仅关注物体运动的速度随时间变化的规律,而且还希望知道物体运动的位移随时间变化的规律.我们用我国古代数学家刘徽的思想方法来探究匀变速直线运动的位移与时间的关系.[新课教学]一、匀速直线运动的位移师:我们先从最简单的匀速直线运动的位移与时间的关系人手,讨论位移与时间的关系.我们取初始时刻质点所在的位置为坐标原点.则有t时刻原点的位置坐标工与质点在o~t一段时间间隔内的位移相同.得出位移公式x=vt.请大家根据速度一时间图象的意义,画出匀速直线运动的速度一时间图象.学生动手定性画出一质点做匀速直线运动的速度一时间图象.如图2—3—1和2—3—2所示.师:请同学们结合自己所画的图象,求图线与初、末时刻线和时间轴围成的矩形面积.生:正好是vt.师:当速度值为正值和为负值时,它们的位移有什么不同?生:当速度值为正值时,x=vtO,图线与时间轴所围成的矩形在时间轴的上方.当速度值为负值时,x=vtO,图线与时间轴所围成的矩形在时间轴的下方.师:位移xo表示位移方向与规定的正方向相同,位移xO表示位移方向与规定的正方向相反.师:对于匀变速直线运动,它的位移与它的v—t图象,是不是也有类似的关系呢?二、匀变速直线运动的位移[思考与讨论]学生阅读教材第40页思考与讨论栏目,老师组织学生讨论这一问题.(课件投影)在“探究小车的运动规律”的测量记录中,某同学得到了小车在0,1,2,3,4,5几个位置的瞬时速度.如下表:位置编号012345时间t/s00.10.20.30.40.5速度v/(m·s—1)0.380.630.881.111.381.62师:能否根据表中的数据,用最简便的方法估算实验中小车从位置0到位置5的位移?学生讨论后回答.学生活动生:在估算的前提下,我们可以用某一时刻的瞬时速度代表它附近的一小段时间内的平均速度,当所取的时间间隔越小时,这一瞬时的速度越能更准确地描述那一段时间内的平均运动快慢.用这种方法得到的各段的平均速度乘以相应的时间间隔,得到该区段的位移x=vt,将这些位移加起来,就得到总位移.师:当我们在上面的讨论中不是取0.1s时,而是取得更小些.比如0.06s,同样用这个方法计算,误差会更小些,若取0.04s,0.02s……误差会怎样?生:误差会更小.所取时间间隔越短,平均速度越能更精确地描述那一瞬时的速度,误差也就越小.[交流与讨论](课件投影)请同学们阅读下面的关于刘徽的“割圆术”.分割和逼近的方法在物理学研究中有着广泛的应用.早在公元263年,魏晋时的数学家刘徽首创了“割圆术”——圆内正多边形的边数越多,其周长和面积就越接近圆的周长和面积.他著有《九章算术》,在书中有很多创见,尤其是用割圆术来计算圆周率的想法,含有极限观念,是他的一个大创造.他用这种方法计算了圆内接正192边形的周长,得到了圆周率的近似值π=157/50(=3.14);后来又计算了圆内接正3072边形的周长,又得到了圆周率的近似值π=3927/1250(=3.1416),用正多边形逐渐增加边数的方法来计算圆周率,早在古希腊的数学家阿基米德首先采用,但是阿基米德是同时采用内接和外切两种计算,而刘徽只用内接,因而较阿基米德的方法简便得多.学生讨论刘徽的“割圆术”和他的圆周率,体会里面的“微分”思想方法.生:刘徽采用了无限分割逐渐逼近的思想.圆内一正多边形边数越多,周长和面积就越接近圆的周长和面积.让学生动手用剪刀剪圆,体会分割和积累的思想.具体操作是:用剪刀剪一大口,剪口是一条直线;如用剪刀不断地剪许多小口,这许多小口的积累可以变成一条曲线.师:下面我们采用这种思想方法研究匀加速直线运动的速度一时间图象.(课件展示)一物体做匀变速直线运动的速度一时间图象,如图2—3—4中甲所示.师:请同学们思考这个物体的速度一时间图象,用自己的语言来描述该物体的运动情况.生:该物体做初速度为v0的匀加速直线运动.师:我们模仿刘徽的“割圆术”做法,来“分割”图象中图线与初、末时刻线和时间轴图线所围成的面积.请大家讨论.将学生分组后各个进行“分割”操作.A组生1:我们先把物体的运动分成5个小段,例如t/5算一个小段,在v—t图象中,每小段起始时刻物体的瞬时速度由相应的纵坐标表示(如图乙).A组生2:我们以每小段起始时刻的速度乘以时间t/5近似地当作各小段中物体的位移,各位移可以用一个又窄又高的小矩形的面积代表.5个小矩形的面积之和近似地代表物体在整个过程中的位移.B组生:我们是把物体的运动分成了10个小段.师:请大家对比不同组所做的分割,当它们分成的小段数目越长条矩形与倾斜直线间所夹的小三角形面积越小.这说明什么?生:就像刘徽的“割圆术”,我们分割的小矩形数目越多,小矩形的面积总和越接近于倾斜直线下所围成的梯形的面积.师:当然,我们上面的做法是粗糙的.为了精确一些,可以把运动过程划分为更多的小段,如图丙,用所有这些小段的位移之和,近似代表物体在整个过程中的位移.从v—t图象上看,就是用更多的但更窄的小矩形的面积之和代表物体的位移.可以想象,如果把整个运动过程划分得非常非常细,很多很多小矩形的面积之和,就能准确地代表物体的位移了.这时,“很多很多”小矩形顶端的“锯齿形”就看不出来了,这些小矩形合在一起组成了一个梯形OABC,梯形OABC的面积就代表做匀变速直线运动物体在0(此时速度是v0)到t(此时速度是v)这段时间内的位移.教师引导学生分析求解梯形的面积,指导学生怎样求梯形的面积.生:在图丁中,v—t图象中直线下面的梯形OABC的面积是S=(OC+AB)XOA/2把面积及各条线段换成所代表的物理量,上式变成x=(Vo+V)t/2把前面已经学过的速度公式v=v0+at代人,得到x=vot+at2/2这就是表示匀变速直线运动的位移与时间关系的公式。师:这个位移公式虽然是在匀加速直线运动的情景下导出的,但也同样适用于匀减速直线运动。师:在公式x=vot+at2/2中,我们讨论一下并说明各物理量的意义,以及应该注意的问题。生:公式中有起始时刻的初速度vo,有t时刻末的俊置x(t时间间隔内的位移),有匀变速运动的加速度a,有时间间隔t师:注意这里哪些是矢量,讨论一下应该注意哪些问题.生:公式中有三个矢量,除时间t外,都是矢量.师:物体做直线运动时,矢量的方向性可以在选定正方向后,用正、负来体现.方向与规定的正方向相同时,矢量取正值,方向与规定的负方向相反时,矢量取负值.一般我们都选物体的运动方向或是初速度的方向为正.师:在匀减速直线运动中,如刹车问题中,尤其要注意加速度的方向与运动相反.教师课件投影图2—3—5.师:我们在本节课的开始发现匀速直线运动的速度一时间图象中图线与坐标轴所围成的面积能反映位移。下面我们也看一下匀变速直线运动的速度一时间图象是否也能反映这个问题.师:我给大家在图上形象地标出了初速度、速度的变化量,请大家从图象上用画斜线部分的面积表示位移来进一步加深对公式的理解.请大家讨论后对此加以说明.学生讨论.生:at(是o~t时间内的速度变化量△v,就是图上画右斜线部分的三角形的高,而该三角形的底恰好是时间间隔t,所以该三角形的面积正好等于1/2·at·t=at2/2。该三角形下画左斜线部分的矩形的宽正好是初速度vo,而长就是时间间隔t,所以该矩形的面积等于v0t.于是这个三角形和矩形的“面积”之和,就等于这段时间间隔t内的位移(或t时刻的位置).即x=vot+at2/2.师:类似的,请大家自己画出一个初速度为vo的匀减速直线运动的速度图象,从中体会:图象与时间轴所围成的梯形“面积”可看作长方形“面积”v0t与三角形“面积”1/2·at·t=at2/2之差.[课堂探究]一质点以一定初速度沿竖直方向抛出,得到它的速度一时间图象如图2—3—6所示.试求出它在前2s内的位移,后2s内的位移,前4s内的位移.参考答案:前2s内物体的位移为5m,前4s内的位移为零.解析:由速度一时间图象可以用图线所围成的面积求物体的位移.前2s内物体的位移为5m,大小等于物体在前2s内图线所围成的三角形的面积.前4s内的位移为前2s内的三角形的面积与后2s内的三角形的面积之“和”,但要注意当三角形在时间轴下方时,所表示的位移为负.所以这4s内的位移为两个三角形的面积之差,由两个三角形的面积相等,所以其总位移为零.教师总结对此类型的试题进行点评.(课件投影)特例:如图2—3—7所示,初速度为负值的匀减速直线运动,位移由两部分组成:t1时刻之前位移x1为负值;t2时刻之后位移x2为正值;故在0~t2时间内总位移x=|x2|一|x1|若x0,说明这段时间内物体的位移为正;若x0,说明这段时间内物体的位移为负.(课堂训练)一质点沿一直线运动,t=o时,位于坐标原点,图2—3—8为质点做直线运动的速度一时间图象.由图可知:(1)该质点的位移随时间变化的关系式是:x=.(2)在时刻t=s时,质点距坐标原点最远.(3)从t=0到t=20s内质点的位移是;通过的路程是;参考答案:(1)一4t+0.2t2(2)10(3)040m解析:由图象可知v0=一4m/s,斜率为0.4,则x=vot+at2/2=一4t+0.2t2,物体10s前沿负方向运动,10s后返回,所以10s时距原点最远.20s时返回原点,位移为0,路程为40m,[实践与拓展]位移与时间的关系式为x=vot+at2/2,我们已经用图象表示了速度与时间的关系.那么,我们能不能用图象表示位移与时间的关系呢?位移与时间的关系也可以用图象来表示,怎样表示,请大家讨论,并亲自实践,做一做.同理可以由x=一4t+0.2t2,得出v0=一4m/s,a=0.4师:描述位移随时间变化关系的图象,叫做位移一时间图象、x—t图象.用初中学过的数学知识,如一次函数、二次函数等,画出匀变速直线运动x=vot+at2/2的位移一时间图象的草图.学生画出后,选择典型的例子投影讨论.如图2—3—9所示.生:我们研究的是直线运动,为什么画出来的位移一时间图象不是直线呢?师:位移图象反映的是位移随时间变化的规律,可以根据物体在不同时刻的位移在x—t坐标系中描点作出.直线运动是根据运动轨迹来命名的.而x—t图象中的图线不是运动轨迹,因此x—t图象中图线是不是直线与直线运动的轨迹没有任何直接关系.[例题剖析](出示例题)一辆汽车以1m/s2的加速度行驶了12s,驶过了180m.汽车开始加速时的速度是多少?让学生审题,弄清题意后用自己的语言将题目所给的物理情景描述出来.生:题目描述一辆汽车的加速运动情况,加速度是lm/s2,加速行
本文标题:匀速直线运动的位移和时间的关系1
链接地址:https://www.777doc.com/doc-1486413 .html