您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 规章制度 > 高数一-第二章(导数与微分)§1-§2
1第二章导数与微分2导数与微分是微分学的基本内容,微分学又是微积分学的重要组成部分。导数是从实际问题中抽象出来的,它具有广泛的应用。如何对函数求导,是学好高等数学要过的第二道难关。3重点内容:•导数的定义与几何意义•函数的求导公式与求导法则•复合函数、初等函数的导数•隐函数的导数•由参数方程确定的函数的导数•高阶导数•导数与连续的关系4§1.导数的概念5一、引例关于变速直线运动的速度v(t).速度=路程时间,tsv设变速直线运动的位置函数为s=s(t),求t0时刻的瞬时速度v(t0).t=0,v=0,t=t0-v=?△t△s△s在时间△t内的平均速度:vt0+△t-vtvt00lim)(例1:tst0lim6.)()(limlim)(00000ttsttststvtt∴物体运动的瞬时速度是位置函数的增量和时间增量的比当时间增量趋于零时的极限。两个增量比的极限称为变化率,速度就是位置函数对时间的变化率。7曲线的切线例2:0xy上点设曲线)(xfy)),(,(000xfxMM0.))(,(00xxfxxM为曲线上一动点,M.则割线M0M的斜率,tanxy0xxx0xy,当0x点M沿曲线→M0,同时,T则割线M0M的极限位置M0T就是曲线在点M0处的切线。tanlimtanxyx0lim8二、导数的定义有的某一邻域内在点设函数0)(xxfy相应的时,处有增量点在定义,当xxx0,)()(00xfxxfy函数的增量为:存在,若xxfxxfxyxx)()(limlim0000则称这极限值为y=f(x)在点x0处的导数,,0xxy记作:),(0xf或,0xxdxdy.)(0xxxdxfd9说明:1.f(x)在点x0处存在导数,就称f(x)在点x0处可导;f(x)在点x0处上述极限不存在,就称f(x)在点x0处不可导。就称f(x)在点x0处的导数为无穷大。,0xyx时,若102.,,00xxxxxx则若令,00xxx,时则导数又定义为:.)()(lim)(0000xxxfxfxfxx3.若f(x)在区间(a,b)内每一点都可导,则称f(x)在区间(a,b)内可导。对(a,b)内每一点x所构成的新函数称为函数y=f(x)的导函数,记为),(xf或,y,xdyd,)(xdxfd简称导数。显然,点的函数值。在就是00)()(xxfxf.)()(limlim)(00000xxfxxfxyxfxx11注意:前者是导函数的函数值,后者是常数的导数,xxfxxfxfx)()(lim)(0000,xxfxxfxfx)()(lim)(0.)()(lim)(0000xxxfxfxfxx)()()1(0xfxf与前者是函数,后者是函数值(常数).])([)()2(00xfxf与12,xxfxxfxyxfxx)()(limlim)(00000存在,若xyx0lim则称其极限为f(x)在点x0处的右导数,记作;)(0xf4.存在,若xyx0lim则称其极限为f(x)在点x0处的左导数,记作.)(0xf)(0xx)(0xx显然,若f(x)在x0处可导)()(00xfxf13例题例1.存在,如果)(0xf按照导数定义指出A表示什么?;)()(lim)1(000Ahxfhxfh).(0xfA;)()(lim)2(000Axxfxxfx--)(0xf=).(0xfA-14xxfx)(lim0存在;且其中)0(,0)0(,)(lim)3(0ffAxxfxxxfx)(lim0)0(f0,)0(f.)0(fA.)()(lim)4(000Axxxfxxfxxxxfxxfx)()(lim000)()(00xfxfxxfxxfx)()(lim000xxfxxfx)()(lim000)()(00xfxf.)(20xfA15例2:求存在,设,0,)(baxf.)()(lim0xxbxfxaxfx解:xxbxfxaxfx)()(lim0xxbxfxaxfx)()(lim0)()(xfxfxxfxaxfx)()(lim0xxfxbxfx)()(lim0aa-b(-b))(xfa)(xfb.)()(xfba16例2:证明:可导的偶函数的导数是奇函数。证一:设f(x)是可导的偶函数,要证).()(xfxfxxfxxfxfx)()(lim)(0xxfxxfx)()]([lim0),()(ufufxxfxxfx)()(lim0,)(xf得证。17四、求导举例(1)求增量△y;;)2(xy算比值.lim)3(0xyx求求下列函数的导数:.),(.1为常数cbcbxy解:)()(cbxcxxby,xb,bxxbxy,limlim00bbxyxx特别,当b=0时,y=c,.0)(c.)(bcbx即y182.y=xn,(n为正整数)解:nnxxxy)(])())[((121nnnxxxxxxxxx121)()(nnnxxxxxxxy)0(1xxnn.)(1nnxnxy还可证:1)(xx(α为一切实数)191)(nnxnx1)(xx)(2x)(3x)1(x)1(2x)(x)1(xx223x21x32xx212321x.213x203.y=sinx解:xxxysin)sin(,2sin22cos2xxxxxxxxy2sin)2cos(2)0(xxcosxxcos)(sinxxsin)(cos同理,21)1,0(.5aaayx解:xxxaay),1(xxaaxaaxyxx1)0(xaaxln.ln)(aaaxx特别,.)(xxee22xy0y=f(x)M)(0xfxNyxx0)(xf考虑)()(00xfxxfyMNKxyxy斜率是..x0令x0五、导数的几何意义23xy0y=f(x)M)(0xfxNyxx0)()(00xfxxfyMNKxyx0令x0)(xf考虑导数的几何意义xy斜率是24xy0y=f(x)M)(0xfxyx0lim)()(00xfxxfyMNKxy)(0xf=tan处切线的斜率)表示曲线在点0(xxf..x0令x0.)(xf考虑导数的几何意义25表示了处的导数点在)()(00xfxxf处的切线斜率。在曲线),()(000yxMxfy;)(tan0xfk,若)(0xf,即tan的切线在点曲线表示),()(00yxxf轴。垂直于x26曲线的切线与法线)(xfy曲线方程设,0)(0xf若的处在点则0)(xxf切线方程为:))((000xxxfyy))(()()(000xxxfxfxf即法线方程为:)()(1000xxxfyy,0)(0xf若切线(∥x轴):y=y0法线(⊥x轴):x=x0,)(0xf若切线(⊥x轴):法线(∥x轴):x=x0y=y027例问抛物线y=x2上哪一点的切线平行于直线y=x,分别求曲线在该点处的切线与法线方程。解:y=x2在M0处的切线斜率为设所求点为M0(x0,y0),0My,2200xxxxy=x的斜率.1y120x由,210x∴所求点).41,21(0M28法线方程:42141yxxy切线方程:432141)(yxxy29六、函数可导与连续的关系定理:若f(x)在点x0处可导,则f(x)在点x0处连续。反之不真!30证:∵f(x)在点x0处可导,∴在x0处有定义,)(lim00xfxyx由,)(0xfxy)0,0(xxxxfy)(0)0(x0∴f(x)在点x0处连续。反例:处连续,在已知0xxy0xy考察y在x=0处的左、右导数:,1)0(f,1)0(f≠∴f(x)在点x0处不可导。31例1:可导必连续,连续未必可导;不连续必不可导!讨论下列函数在x=0处的连续性与可导性..0,00,1)1(xxxy解:xx1lim0,0)0(f∴函数在x=0处不连续,也不可导。32.0,00,1sin)2(xxxxy解:xxxfxx1sinlim)(lim00,)0(0fxfxfxyxx)0()0(limlim00∴函数y在x=0处连续;xxxx1sinlim0xx1sinlim0不存在,∴函数y在x=0处不可导。33.0,00,sin)3(2xxxxy解:xfxfxyxx)0()0(limlim00xxxx20sinlim220)(sinlimxxx),0(1f∴函数y在x=0处可导,且必连续。34.0,10,)()4(xxxexfx解:)(lim)00(0xffxxxe0lim)(lim)00(0xffx1)1(lim0xx)0(1f∴函数f(x)在x=0处连续;0)0()(lim)0(0xfxffxxexx1lim010)0()(lim)0(0xfxffxxxx11lim01,)0()0(ff∴f(x)在x=0处不可导。35试确定常数a,b,使f(x)在x=1处可导。,1,1,)(2xbaxxexfx设例2:解:欲可导,必先连续。21lim)01(xxef=e,)(lim)01(1bxafx,ba欲连续,;eba)1(f1lim21xeexx=2e,1lim)1(1xebaxfx,aeb.1lim1axaaxx欲可导,a=2e;且b=e-2e=-e.11lim112xeexx36§2.函数的求导法则37一、函数的和、差、积、商的求导法则设函数u=u(x),v=v(x)均为可导函数,;)()1(vuvu则;)()2(vuvuvu常数;—CuCuC,)(;)(wvuwvuwvuwvu.)()3(2vvuvuvu38例题:.,2lnsin2.105xxyexxxy求.,tan.2yxy求.sec)(tan2xx同理,.csc)(cot2xx.,sec.3yxy求.tansec)(secxxx.cotcsc)(cscxxx同理,,)1(cos254xexxxy.10xy,cossintanxxxy39.,cot4ln.4'yxxxy求xxxxxy22csc41ln1'.csc4ln122xxx40二、反函数的求导法则定理:在某区间Iy单调连续且可导
本文标题:高数一-第二章(导数与微分)§1-§2
链接地址:https://www.777doc.com/doc-1488511 .html