您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 锂电池保护板基本知识
锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。保护板电芯PTCNTC保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。MOS管电阻PCB保护IC电容保护板元器件简介1、电阻:起限流、采样作用;2、电容:对直流电而言电阻值“∞“,对交流电而言阻值接近零,电容两端电压不能突变,能起瞬间稳压作用,滤波作用;3、FUSE:熔断保险丝,起过流保护作用;4、PTC:PTC是Positivetemperaturecoefficient的缩写,意即正温度系数电阻,(温度越高,阻值越大),可以防止电池高温放电和不安全的大电流的发生,即过流保护作用。PTC器件采用高分子材料聚合物,通过严格的工艺制成,由聚合物树酯基体及分布在里面的导电粒子组成,在正常情况下,导电粒子在树酯中构成导电通路,器件表现为低阻抗,电路中有过流发生时,流经PTC的大电流产生的热量使聚合物树酯基体体积臌胀,因而切断导电粒子间的连接,从而对电路的过流起保护作用。当故障解除后,方可自动恢复到初始状态,保证电路正常工作。通路断路受热基体膨胀故障解除基体恢复初始状态5、NTC是Negativetemperaturecoefficient的缩写,意即负温度系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及时反应、控制内部中断而停止充放电。6、ID是Identification的缩写,即身份识别的意思它分为两种:一是存储器,常为单线接口存储器,存储电池种类、生产日期等信息;二是识别电阻。两者可起到产品的可追溯和应用的限制。7、IC:特点:①内藏高精度电压检出电路;A、过充电检出电压(3.9V~4.4V),一般来说,IC型号不同,过充电检出电压也不一样,就我司现在使用的IC而言,过充电检出电压在4.2V~4.4V;B、过放电检出电压(2.0V~3.0V),一般来说,IC型号不同,过放电检出电压也不一样,就我司现在使用的IC而言,过放电检出电压在2.6V~2.8V;②连接充电器的端子采用高耐压装置;③各种延迟时间由内载电路来实现(过放、过充电,过电流延迟);④内藏三级过电流检出电路(过电路1、过电流2、负载短路);⑤充电器检出功能、异常充电电流检出功能;⑥工作温度范围:-40℃~+85℃。IC的外形结构五脚六脚IC的内部结构在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。关于IC几种状态的概念(通常状态下CO、DO为高电平,电池能充放电)1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。3、过放电检出电压:通常状态下,Vdd逐渐降低至DO端由高电平变为低电平时VDD-VSS间电压。4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS间电压。6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到DO端由高电平变为低电平时VM-VSS间电压。7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。10、过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。记号部件推荐值minmaxR1阻抗470Ω300Ω1.3KΩC1电容0.1μF0.01μF1.0μFR2阻抗1KΩ300Ω1.3KΩ保护板IC外置部件要求(以S81241为例):1、在R1处加载比R2小的阻抗的场合,由于充电器连接电流从充电器流向IC,VDD-VSS间电压有超过最大额定值的情况,故R1一般小于R2。2、如果C1上加载少于0.01μF的电容,对负载短路检出,充电器的连接,过电流1和过电流2来说,DO有可能发生振荡。3、若R2设定电阻小于300Ω,则在充电时,充电电流有可能超过IC容许功耗而损坏IC,如果R2超过1.3KΩ时,则高电压充电器充电时,有不能切断充电电源的情况。MOS管21438765876543211MOS管外型结构2345678图一图二图三在图一中,MOS管脚1、8通过MOS管内部线路或保护板上线路连在一起;脚2和脚3,脚6和脚7通过内部连在一起;在图二中,MOS管脚D1、D2通过MOS管内部线路连在一起;在图三中,MOS管脚1、2、3通过内部线路连在一起,MOS管脚5、6、7、8通过内部线路连在一起。IC、MOS管管脚的命名规则21438765一般来说,双列式电子元器件的管脚命名都遵从逆时针命名规则,IC、MOS管也不例外。这一般包含两种类型:1、如元器件上有小圆凹点则凹点所对管脚为1脚,其余的按逆时针排列(图一);2、如没凹点,但有文字(通常为元件型号),则将元件摆放至正常的文字读写状态,(图2)文字下方左侧的第一个管脚为1脚,其余按逆时针排列。G2N图一图二1、导通电阻:定义:当充电电流为500mA时,MOS管的导通阻抗。由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因此保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在70mΩ,如太大会导致通讯设备工作不正常,如手机在通话时突然断线、电话接不通、噪声等现象。2、自耗电流定义:IC工作电压为3.6V,空载状态下,流经保护IC的工作电流,一般极小.保护板的自耗电流直接影响电池的待机时间,通常规定保护板的自耗电流小于10微安.3、电流能力保护板作为锂电芯的安全保护器件,既要在设备的正常工作电流范围内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护.5、机械性能、温度适应能力、抗静电能力保护板必须能通过国标规定的震动,冲击试验;保护板在-40到85℃能安全工作,能经受±15KV的非接触ESD静电测试.普通保护板原理图(典型)VDDVSSDOCOVMDPUR1C1R2R412345612345678MB+B-P+P-IDR3NTC2C3FB+P+IC过放控制过充控制+-充电FUSE电芯MOS管过放控制如图中,IC由电芯供电,电压在1.5v-10v均能保证可靠工作。1、通常状态:电池电压在过放电检出电压以上(2.75V以上),过充电检出电压以下(4.3V以下),VM端子的电压在充电器检出电压以上,在过电流/检出电压以下(OV)的情况下,IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制MOS管,DO、CO端都为高电平,MOS管处导通状态,这时可以自由的充电和放电;当电池被充电使电压超过设定值VC(4.25-4.35V)后,VD1翻转使Cout变为低电平,T1截止,充电停止,当电池电压回落至VCR(3.8-4.1V)时,Cout变为高电平,T1导通充电继续,VCR小于VC一个定值,以防止电流频繁跳变。2、过充保护IC电量过放控制过充控制+-充电IC电量过放控制过充控制+-充电IC电量过放控制过充控制+-充电4.25-4.35V3.8-4.1V当电池电压因放电而降低至设定值VD(2.3-2.5V)时,VD2翻转,以IC内部固定的短时间延时后,使Dout变为低电平,T2截止,放电停止。3、过放保护电量过放控制-IC+放电LOAD电量放电IC+LOAD电压-放电2.3-2.5VIC+LOAD4、过流、短路保护当电路放电电流超过设定值或输出被短路时,过流、短路检测电路动作,使MOS管(T2)关断,电流截止。IC电流门限-放电IC过放控制过放控制+-放电电流门限1、原理框图同单节电芯一样,在多节电芯保护电路中,保护板同样必须能对电芯提供过充、过放、过流、短路等保护。IC过放控制过充控制-n节电芯+双节电芯保护板原理图BMB+B-F1R429007R11kR21kR31kC10.1uFC20.1uFC40.01uFR54.7MR41kP-P+P-SENS1DO2CO3VM4VSS5ICT6VC7VCC8U1S-8232ADrain11Source12Source13Gate14Gate25Source26Source27Drain28U2FTB2017A1、无显示(无电压、充不进电、空载电压低):当发现有电池无显示时,可采取以下步骤进行分析(工具:万用表):①先用万用表测电芯正负极电压,如时电芯电压正常,则保护板有问题,进入步骤B;如果电芯无电压或电压低,则可测保护板静态电流(自耗电),其电流小于10μA,则电芯有问题,若电流大于10μA,则为保护板静态电流过大,保护板来料不良。②若是保护板有问题,则可用万用表黑表笔始终接触电芯负极,红表笔仪次沿FUSE两端、471电阻两端、IC的VDD端、DO端、CO端测电压,若保护板是良好的,假设电芯电压为3.8V,则这几处的电压值也应为3.8V,如若这几处电压有不为3.8V的,可用以下方法查找原因:A、FUSE两端电压有变化,可用万用表导通档测FUSE是否导通,若不通则为FUSE断;或者用导线把FUSE短接,再测五金(导线)P+、P-间有无电压,如有则为FUSE断,然后可用万且用表20A档测电池有无短路保护,如有短路保护则FUSE可能为来料不良,有可能为操作时损坏;如无短路保护,则应为MOS管放电控制端出现问题或IC的VM端出现问题,具体分析方法见无保护的分析方法。B、若为471电阻两端电压有变化,可采取以下方法分析:先用万用表Ω档测471电阻是否正常,若电阻不正常则可用烙铁焊电阻两端,如电阻为虚焊则应可恢复到正常阻值,若电阻不恢复到正常值,则可用烙铁沾锡并轻拨电阻一端,看电阻是否断裂,如为断裂,则应追查有何处断裂。如若电阻即不虚焊,又无断裂,则应追查来料有无问题。若电阻阻值正常,则应为IC或MOS管出现异常而引起471电阻电压降低,具体分析方法见“C”。C、若前面FUSE、471电阻都无问题,则问题可能出于IC与MOS管这一对配合元件上,其中有几种情况:a、元器件虚焊:可用焊铁焊MOS管或IC脚,若是元器件虚则应可焊好;b、元器件损坏,可用好的元器件替换或测元器件脚间阻值的方法来判定。D、若FUSE、471电阻、IC、MOS管的电压都无变化,则可用万用表红表笔接触正极不动,黑表笔接触MOS管2、3脚或MOS管5、6脚。若电压不变,再测五金P+、P-,若无电压,则应是保护板过孔不通。如要判定为正极过孔不通还是负极过孔不通,则可用万用表表笔一到接电芯一极(B+或B-),另一支接五金另一极(P+或P-)来判定。2、无短路保护:若电池无短路保护,则可以从以下几种情况来分析:A、VM端电阻出现问题,可用万用表一支表笔接触IC的VM端,另一只表笔接触与VM端电阻相连的MOS管部分(即P-管脚),确认电阻值大小,如果电阻阻值出现问题,则可用烙铁来判定电阻上虚焊、断裂,还是来料的问题。B、MOS管放电控制端不能闭合,要判断是不是MOS管出现问题,最简单的方法就是用一个好保
本文标题:锂电池保护板基本知识
链接地址:https://www.777doc.com/doc-1491053 .html