您好,欢迎访问三七文档
一、数列的概念与简单的表示法:1.数列的概念:按照一定的顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。2.数列的分类:有穷数列;无穷数列;递增数列;递减数列;常数列;摆动数列.3.数列的通项公式、递推公式、数列与函数的关系。二、等差数列与等比数列(其基本知识内容请看下表):注意:(1)若an+1an恒成立,则{an}为递增数列(2)若an+1an恒成立,则{an}为递减数列(2)在数列中,若{an}nn1nn1aaaann1nn1aaaa则最小.na则最大.naqaann1dnaan)1(111nnqaa()nmaanmdmnmnqaa2abAabG22)1(2)(11dnnnaaanSnn1111)1(111qnaqqqaaqqaSnnnqpmnaaaaqpmnaaaapmnaaa22pmnaaadaann1kkkkkSSSSS232,,kkkkkSSSSS232,,仍成等差仍成等比1211nSnSSannn等差数列等比数列定义通项通项推广中项性质求和公式关系式nnSa、适用所有数列等差数列与等比数列知识系表:1nna1,1,1,1,111,)1.写出下面数列的一个通项公式,使它的前几项分别是下列各数:51019nna5,55,555,55565,)2)512nna2,3,2,3,2,3,3)23nnan为正奇数为正偶数,,,,,,,ababab1122nnababa知识点:1、观察法猜想求通项:2、特殊数列的通项:3、公式法求通项:6、构造法求通项bkaann1111nnbkbakakk4、累加法,如)(1nfaann)(1nfaann5、累乘法,如2.观察数列:30,37,32,35,34,33,36,(),38的特点,在括号内适当的一个数是______3.在等比数列中,a4+a6=3,则a5(a3+2a5+a7)=_____4.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为()A.20B.22C.24D.28319C5.已知数列{an}中,a1=1,并且3an+1-3an=1,则a301=()A.100B.101C.102D.103B6.若{an}是等比数列,且an0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于()A.5B.1C.15D.10A例1、在等差数列{an}中,a1-a4-a8-a12+a15=2,求a3+a13的值。解:由题a1+a15=a4+a12=2a8∴a8=-2故a3+a13=2a8=-4例2、已知{an}是等比数列,且a2a4+2a3a5+a4a6=25,an>0,求a3+a5的值。解:由题a32=a2a4,a52=a4a6,∴a32+2a3a5+a52=25即(a3+a5)2=25故a3+a5=5∵an>0典例分析:一、等差数列与等比数列性质的灵活运用例2.等差数列{an}中,a10,S9=S12,该数列前多少项的和最小?分析:如果等差数列{an}由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:100nnnaSa是最小值1.当a1<0,d>0时,2.当a1>0,d<0时,100nnnaSa是最大值思路1:寻求通项∴n取10或11时Sn取最小值111199(91)1212(121)22adad1110da即:da30311011)10)(1(111naanaan010a易知011a012a由于01a二、等差数列的最值问题例2.等差数列{an}中,a10,S9=S12,该数列前多少项的和最小?分析:等差数列{an}的通项an是关于n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和Sn的最大最小值可用解决二次函数的最值问题的方法.思路2:从函数的角度来分析数列问题.设等差数列{an}的公差为d,则由题意得:111199(91)1212(121)22adad110ad111(1)10(1)22nSnannddnnnd∵a10,∴d0,∵d0,∴Sn有最小值.又∵n∈N*,∴n=10或n=11时,Sn取最小值即:da3031212122dndn222121()228dnd例2.等差数列{an}中,a10,S9=S12,该数列前多少项和最小?分析:数列的图象是一群孤立的点,数列前n项和Sn的图象也是一群孤立的点.此题等差数列前n项和Sn的图象是在抛物线上一群孤立的点.求Sn的最大最小值即要求距离对称轴最近的正整数n.因为S9=S12,又S1=a10,所以Sn的图象所在的抛物线的对称轴为直线n=(9+12)÷2=10.5,所以Sn有最小值∴数列{an}的前10项或前11项和最小nSnon=2ba10.5类比:二次函数f(x),若f(9)=f(12),则函数f(x)图象的对称轴为直线x=(9+12)÷2=10.5若f(x+2)=f(2-x),则函数f(x)图象的对称轴为直线x=2思路3:函数图像、数形结合令2nSAnBn故开口向上过原点抛物线设等差数列{an}的公差为d,等比数列{bn}的公比为,则由题意得q(2)47)21((1)2)1(2qdqd21,3qd23nan121nnb解析:121)23(nnnnnbac通项特征:由等差数列通项与等比数列通项相乘而得求和方法:错位相减法——错项法例3已知数列{an}是等差数列,数列{bn}是等比数列,又a1=b1(1)求数列{an}及数列{bn}的通项公式;(2)设cn=anbn求数列{cn}的前n项和Sn47=1,a2b2=2,a3b3=.三、等差、等比数列的综合应用解析:121021)23(217214211nnnSnnnS21)23(21721421121321两式相减:nnnnnnnS223211)211(213121)23(2132132131211121113326642(4)82222nnnnnnnS错位相减法121)23(nnnnnbacnnccccS321221)53(nn21)53(1nn例4、一个等差数列的前12项的和为354,前12项中的偶数项的和与奇数项的和之比为32:27,求公差d.dada2559112:11法一5d2732354:奇偶偶奇法二SSSS192162偶奇SS∴6d=S偶-S奇故d=5四、有关项与和的问题:例5.已知是两个等差数列,前项和,nnab88.ab分别是和且nAn,nB72,3nnAnBn求181073152157151588BAba1212nnnnBAba12121211212121nnnnnaaABnbb212212nnnnnaanbb分析:结论:【思路一】解:【思路二】22727272333nnnnAnnnBnnnnn令:22723nnAnnBnn11nnnnnnaAAbBB则14522nn8810718ab五、走进高考:(2009年山东(文)20T),Nn等比数列的前n项和为Sn,已知对任意的点均在函数的图像上.nanSn,均为常数)且rbbbrbyx,,10((1)求r的值;(2)当记,求数列的前n项和Tn.2b)(41Nnanbnnnb13311,222nnnrT
本文标题:(人教版)高中数学必修五课件:第二章课件--数列复习课---人教版a.ppt(共17张ppt)
链接地址:https://www.777doc.com/doc-1494507 .html