您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019年人教版八年级数学上册第一次月考卷含答案
2019-2020学年八年级数学上学期第一次月考题一、选择题(本大题有12小题,每小题3分,共36分.)1.下列图形中,不是轴对称图形的是().A.B.C.D.2.下列线段能构成三角形的是().A.4,5,6B.6,8,15C.5,7,12D.3,9,133.已知等腰三角形的两边长分别为3和6,则它的周长等于().A.12B.12或15C.15D.15或184.如图1,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得15OA米,10OB米,A、B间的距离不可能是()米.A.20B.10C.15D.5图1图2图35.如图2,将三角尺的直角顶点放在直尺的一边上,130250°,°,则3的度数等于().A.50°B.30°C.20°D.15°6.如图3,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为().A.72°B.36°C.60°D.82°7.一个多边形的内角和是外角和的2倍,则这个多边形是().A.四边形B.五边形C.六边形D.八边形8.下列命题:①一腰和底边对应相等的两个等腰三角形全等;②腰长相等,且都有一个40°角的两个等腰三角形全等;③腰长相等,且都有一个100°角的两个等腰三角形全等;123图5CADBE④腰和顶角对应相等的两个等腰三角形全等;⑤两个等边三角形全等.其中正确的命题的个数有().A.2个B.3个C.4个D.5个9.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是().A.AC=DFB.AB=DEC.∠A=∠DD.BC=EF1100.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于().A.15°或75°B.140°C.40°D.140°或40°11.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为().A.9B.8C.7D.6图412.如图5所示,△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E.△ABC的周长为12,△ADE的周长为6,则BC的长为().A.3B.4C.5D.6二、填空题(本大题有6小题,每小题4分,共24分)13.在△ABC中,∠A=21∠B=31∠C,则∠B=.14.一个多边形的每一个外角都等于36º,则该多边形的内角和等于.15.将一副三角板按如图摆放,图中∠α的度数是.16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.16题17题15题17.如图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM的周长为______.18.△ABC中,∠A=1000,BI、CI分别平分∠ABC,∠ACB,则∠BIC=______;若BN、CN分别平分∠ABC,∠ACB的外角平分线,则∠N=______.三、解答题(本大题共有7个小题,共60分)19.(7分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.20.(7分)如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.21.(8分)已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠D,CF∥DE.求证:AC∥BD.A22.(8分)如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F作EF⊥AC交AB于D,求证:DB=BC.ECFDBGA23.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm²,AB=16cm,AC=12cm,求DE的长.24.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.25.(12分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG、EF.(1)求证:BG=CF.(2)求证:EG=EF.(3)请判断BE+CF与EF的大小关系,并证明你的结论.数学试卷答案一﹑选择题(每小题3分,共36分)二﹑填空题(每小题4分,共24分)13.60°;14.1440°;15.105°;16.5;17.14;18.140°;40°三﹑解答题(本大题共7小题,共60分)19.(7分)证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.20.(7分)∠DBC=18°.解答过程略.21.(8分)证明:∵AE=BF∴AE+EF=BF+EF∴AF=BE∵CF∥DE∴∠AFC=∠BED又∵∠C=∠D∴△ACF≌△BDE(AAS)∴∠A=∠B∴AC∥BD.22.(8分)证明:∵∠ABC=90°,∴∠DBF=90°,∴∠DBF=∠ABC,∵EF⊥AC,∴∠AED=∠DBF=90°,∵∠ADE=∠BDF∴∠A=∠F,在△FDB和△ACB中,,∴△ABC≌△FBD(ASA),∴DB=BC.23.(8分)解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF∵S△ABC=S△ABD+S△ACD=1/2AB×DE+1/2AC×DF∴S△ABC=1/2(AB+AC)×DE即1/2×(16+12)×DE=28∴DE=2(cm).题号1236789101112答案BACDCACBBDAA24.(10分)(1)∵△ABC和△DBE均为等腰直角三角形∴AB=BC,BD=BE,∠ABC=∠DBE=90°∴∠ABC﹣∠DBC=∠DBE﹣∠DBC即∠ABD=∠CBE∴△ABD≌△CBE∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE∴∠BAD=∠BCE又∵∠BGA=∠CGF∴∠AFC=∠ABC=90°∴AD⊥CE.25.(12分)证明:(1)∵BG∥AC∴∠DBG=∠C∵D为BC的中点∴BD=CD∵∠BDG=∠CDF∴△BGD≌△CFD(ASA)∴BG=CF(2)∵△BGD≌△CFD∴DG=DF又∵DE⊥DF∴EG=EF(垂直平分线上的点到线段两个端点的距离相等)(3)BE+CF>EF.∵在△BEG中,BE+BG>EG,BG=CF,EG=EF∴BE+CF>EF.
本文标题:2019年人教版八年级数学上册第一次月考卷含答案
链接地址:https://www.777doc.com/doc-1503980 .html