您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 沈萍版-微生物简答题《打印版》
1、如果希望从环境中分离得到厌氧固氮菌,你该如何设计实验?(1)根据选择分离的原理设计不含氮的培养基,在这种培养基上生长的细菌,其氮素应来自固氮作用。(2)将环境样品(例如土样)稀释涂布到选择平板上,放置于厌氧罐中。对厌氧罐采用物理、化学方法除去氧气,保留氮气。培养后在乎板上生长出来的细菌应是厌氧固氮菌或兼性厌氧固氮菌。(3)挑取一定数量的菌落,对应点种到两块缺氮的选择平板上,分别放置于厌氧罐内、外保温培养。在厌氧罐内外均能生长的为兼性厌氧固氮菌,而在厌氧罐外的平板上不生长,在厌氧罐内的平板上生长的即为可能的厌氧固氮菌。(4)对分离得到的厌氧固氮菌菌落样品进行系列稀释,涂布于相应的选择平板,重复上述步骤直到获得厌氧固氮菌的纯培养。2.对细菌的细胞形态进行观察和描述时应注意哪些方面?你是否能很快地在显微镜下区分同为单细胞的细菌、酵母菌和原生动物?(1)首先应使用稀释涂布等方法对待检菌株的纯度、群落形态、生理特性等进行检查、确认。(2)选用正常的新鲜培养基和新鲜培养物进行培养和观察,避免培养过程中一些物理、化学条件的改变或培养时间过长等因素对细胞形态的影响。(3)报告细胞大小时应选用多个细胞检测的平均数,并记录所用的实验方法,包括培养条件、培养时间、样品制备方法和染色方法等。(4)可从大小和形态上对细菌、酵母菌和原生动物进行区分。酵母菌、原生动物个体较大,一般可用低倍镜观察,酵母菌细胞一般呈卵圆形、圆形、圆柱形或柠檬形,不具运动性,原生动物细胞形态多变,能够运动。相比较而言,细菌细胞一般较小,需用高倍镜或油镜才能看清。3.以紫色非硫细菌为例,解释微生物的营养类型可变性及对环境条件变化适应能力的灵活性。紫色非硫细菌在没有有机物时可同化CO2进行自养生活,有有机物时利用有机物进行异养生活,在光照及厌氧条件下利用光能进行光能营养生活,在黑暗及好氧条件下利用有机物氧化产生的化学能进行化能营养生活。4.如果要从环境中分离得到能利用苯作为碳源和能源的微生物纯培养物,你该如何设计实验?(1)从苯含量较高的环境中采集土样或水样;(2)配制培养基,制备平板,一种仅以苯作为惟一碳源(A),另一种不含任何碳源作为对照(B);(3)将样品适当稀释(十倍稀释法),涂布A平板;(4)将平板置于适当温度条件下培养,观察是否有菌落产生;(5)将A平板上的菌落编号并分别转接至B平板,置于相同温度条件下培养(在B平板上生长的菌落是可利用空气中C02的自养型微生物);(6)挑取在A平板上生长而不在B平板上生长的菌落,在一个新的A平板上划线、培养,获得单菌落,初步确定为可利用苯作为碳源和能源的微生物纯培养物;(7)将初步确定的目标菌株转接至以苯作为惟一碳源的液体培养基中进行摇瓶发酵实验,利用相应化学分析方法定量分析该菌株分解利用苯的情况。5.某些微生物对生长因子的需求具有较高的专一性,可利用它们通过“微生物分析”(microbiologicalassay)对样品中维生素或氨基酸进行定量。试设计实验利用某微生物对某一样品维生素B12的含量进行分析。A将缺乏维生素B12但含有过量其他营养物质的培养基分装于一系列试管,分别定量接入用于测定的微生物;B在这些试管中分别补加不同量的维生素B12标准样品及待测样品,在适宜条件下培养;C以微生物生长量(如测定OD600nm)值对标准样品的量作图,获得标准曲线;D测定含待测样品试管中微生物生长量,对照标准曲线,计算待测样品中维生素B12的含量。6.以伊红美蓝(EMB)培养基为例,分析鉴别培养基的作用原理。EMB培养基含有伊红和美蓝两种染料作为指示剂,大肠杆菌可发酵乳糖产酸造成酸性环境时,这两种染料结合形成复合物,使大肠杆菌菌落带金属光泽的深紫色,而与其他不能发酵乳糖产酸的微生物区分开。7.某学生利用酪素培养基平板筛选产胞外蛋白酶细菌,在酪素培养基平板上发现有几株菌的菌落周围有蛋白水解圈,是否能仅凭蛋白水解圈与菌落直径比大,就断定该菌株产胞外蛋白酶的能力就大,而将其选择为高产蛋白酶的菌种,为什么?不能。因为,(1)不同微生物的营养需求、最适生长温度等生长条件有差别,在同一平板上相同条件下的生长及生理状况不同;(2)不同微生物所产蛋白酶的性质(如最适催化反应温度、pH、对底物酪素的降解能力等)不同;(3)该学生所采用的是一种定性及初步定量的方法,应进一步针对获得的几株菌分别进行培养基及培养条件优化,并在分析这些菌株所产蛋白酶性质的基础上利用摇瓶发酵实验确定蛋白酶高产菌株。8.以大肠杆菌磷酸烯醇式丙酮酸一糖磷酸转移酶系统(PTs)为例解释基团转位。大肠杆菌PTs由5种蛋白质(酶I、酶Ⅱa、酶Ⅱb、酶Ⅱc及热稳定蛋白质HPr)组成,酶Ⅱa、酶b、酶Ⅱc3个亚基构成酶Ⅱ。酶I和HPr为非特异性细胞质蛋白,酶Ⅱa也是细胞质蛋白,亲水性酶Ⅱb与位于细胞膜上的疏水性酶Ⅱc相结合。酶Ⅱ将一个葡萄糖运输进入胞内,磷酸烯醇式丙酮酸(PEP)上的磷酸基团逐步通过酶I和HPr的磷酸化和去磷酸化作用,最终在酶Ⅱ的作用下转移到葡萄糖,这样葡萄糖在通过PTs进入细胞后加上了一个磷酸基团。9.试分析在主动运输中,ATP结合盒式转运蛋白(ABc转运蛋白)系统和膜结合载体蛋白(透过酶)系统的运行机制及相互区别。AABC转运蛋白常由两个疏水性跨膜结构域与胞内的两个核苷酸结合结构域形成复合物,跨膜结构域在膜上形成一个孔,核苷酸结合结构则可结合ATP。ABc转运蛋白发挥功能还需要存在于周质空间(G+菌)或附着在质膜外表面(G一菌)的底物结合蛋白的帮助。底物结合蛋白与被运输物质结合后再与ABC转运蛋白结合,借助于ATP水解释放的能量,ABC转运蛋白将被运输物质转运进入胞内。B膜结合载体蛋白(透过酶)也是跨膜蛋白,被运输物质在膜外表面与透过酶结合,而膜内外质子浓度差在消失过程中,被运输物质与质子一起通过透过酶进入细胞。C被运输物质通过ABC转运蛋白系统和通过透过酶进入细胞的区别在于能量来源不同,前者依靠ATP水解直接偶联物质运输,后者依靠膜内外质子浓度差消失中偶联物质运输。10.比较酵母菌和细菌的乙醇发酵。主要差别是葡萄糖生成丙酮酸的途径不同。酵母菌和某些细菌(胃八叠球菌、肠杆菌)的菌株通过EMP途径生成丙酮酸,而某些细菌(运动发酵单胞菌、厌氧发酵单胞菌)的菌株通过ED途径生成丙酮酸。丙酮酸之后的途径完全相同。11.试比较底物水平磷酸化、氧化磷酸化和光合磷酸化中ATP的产生。底物水平磷酸化,发酵过程中往往伴随着一些高能化合物的生成,如EMP途径中的1,3一二磷酸甘油酸和磷酸烯醇式丙酮酸。这些高能化合物可以直接偶联ATP或GTP的生成。底物水平磷酸化可以存在于发酵过程中,也可以存在于呼吸过程中,但产生能量相对较少。氧化磷酸化,在糖酵解和三羧酸循环过程中,形成的NAD(P)H和FADH,通过电子传递系统将电子传递给电子受体(氧或其他氧化性化合物),同时偶联ATP合成的生物过程。光合磷酸化,光能转变成化学能的过程。当一个叶绿素(或细菌叶绿素)分子吸收光量子时,叶绿素(或细菌叶绿素)即被激活,导致叶绿素(或细菌叶绿素)分子释放一个电子被氧化,释放出的电子在电子传递系统的传递过程中逐步释放能量,偶联ATP的合成。主要分为光合细菌所特有的环式光合磷酸化和绿色植物、藻类和蓝细菌所共有的产氧型非环式光合磷酸化作用。12.什么是无氧呼吸?比较无氧呼吸和有氧呼吸产生能量的多少,并说明原因。无氧呼吸是微生物在降解底物的过程中,将释放出的电子交给NAD(P)+、FAD或FMN等电子载体,再经电子传递系统传给氧化型化合物,作为其最终电子受体,从而生成还原型产物并释放出能量的过程。一般电子传递系统的组成及电子传递方向为:NAD(P)一FP(黄素蛋白)一Fe·s(铁硫蛋白)一CoQ(辅酶Q)一cytb—Cytc—Cyta—cyta3。无氧呼吸的最终电子受体不是氧,而是像NO3—、N02—、SO42—、S2O3一、CO2等,或延胡索酸(fumarate)等外源受体,氧化还原电位差都小于氧气,所以生成的能量不如有氧呼吸产生的多。13.比较光能营养微生物中光合作用的类型。①光合细菌→环式光合磷酸化;②绿硫细菌的非环式光合磷酸化;③嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。是目前所知的最简单的光合磷酸化。嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差。非环式光合磷酸化是绿色植物、藻类和蓝细菌所共有的产氧型光合作用。光能驱动下,电子从光反应中心I(PsI)的叶绿素a出发,通过电子传递链,连同光反应中心Ⅱ(PsⅡ)水的光解生成的H+,生成还原力;光反应中心Ⅱ(PsⅡ)由水的光解产生氧气和电子,电子通过电子传递链,传给光反应中心PsI,期问生成ATP。环式光合磷酸化为光合细菌所特有。光能驱动下,电子从菌绿素分子出发,通过电子传递链的循环,又回到菌绿素,期间产生ATP,还原力来自环境中的无机化合物供氢,不产生氧气。有些光合细菌虽只有一个光合系统,但也以非环式光合磷酸化的方式合成ATP,如绿硫细菌和绿色细菌,从光反应中心释放出的高能电子经铁硫蛋白、铁氧还蛋白、黄素蛋白,最后用于还原NAD+生成NADH。反应中心的还原依靠外源电子供体如S2-、S2O32一等。外源电子供体在氧化过程中放出电子,经电子传递系统传给失去了电子的光合色素,使其还原,同时偶联ATP的生成。嗜盐细菌的光合磷酸化是一种只有嗜盐菌才有的,无叶绿素或细菌叶绿素参与的独特的光合作用。是目前所知的最简单的光合磷酸化。嗜盐细菌紫膜上的细菌视紫红质吸收光能后,在膜内外建立质子浓度差,再由它来推动ATP酶合成ATP。14.简述化能自养微生物的生物氧化作用。化能自养微生物氧化无机物而获得能量和还原力。能量的产生是通过电子传递链的氧化磷酸化形式,电子受体通常是O2,因此,化能自养菌一般为好氧菌。电子供体是H2、NH4+、H2S和Fe2+还原力的获得是逆呼吸链的方向进行传递,同时需要消耗能量。A氨的氧化。NH3和亚硝酸(N02-)是作为能源的最普通的无机氮化合物,能被亚硝化细菌和硝化细菌氧化。B硫的氧化。硫杆菌能够利用一种或多种还原态或部分还原态的硫化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐和亚硫酸盐)作能源。H2S首先被氧化成元素硫,随之被硫氧化酶和细胞色素系统氧化成亚硫酸盐,放出的电子在传递过程中可以偶联产生ATP。C铁的氧化。从亚铁到高铁的生物氧化,对少数细菌来说也是一种产能反应,但这个过程只有少量的能量被利用。亚铁的氧化仅在嗜酸性的氧化亚铁硫杆菌(Thiobacillusferrooxidans)中进行了较为详细的研究。在低pH环境中这种细菌能利用亚铁氧化时放出的能量生长,在该菌的呼吸链中发现了一种含铜的铁硫菌蓝蛋白(rusticyanin),它与几种cytc和一种cyta,氧化酶构成电子传递链。D氢的氧化。氢细菌能利用分子氢氧化产生的能量同化CO2也能利用其他有机物生长。氢细菌的细胞膜上有泛醌、维生素K:及细胞色素等呼吸链组分。在这类细菌中,电子直接从氢传递给电子传递系统,电子在呼吸链传递过程中产生ATP。15.说明革兰氏阳性细菌细胞肽聚糖合成过程以及青霉素的抑制机制。革兰氏阳性菌肽聚糖合成的3个阶段。A细胞质中的合成。①葡萄糖→N-乙酰葡糖胺一UDP(G-UDP)→N-乙酰胞壁酸-UDP(M—UDP)②M-UDP→“Park”核苷酸,即UDP-N-乙酰胞壁酸五肽B细胞膜中的合成。“Park”核苷酸-→肽聚糖单体分子。C细胞膜外的合成。青霉素抑制转肽酶。青霉素是肽聚糖单体五肽尾末端的D-丙氨酸-D-丙氨酸的结构类似物,两者竞争转肽酶的活力中心。16.蓝细菌是一类放氧性光合生物,又是一类固氮菌,说明其固氮酶的抗氧保护机制。有两种特殊的保护系统。A分化出异形胞,其中缺乏光反应中心Ⅱ,异形胞的呼吸强度大于正常细胞,其超氧化物歧化酶的活性高。B非异形胞的保护方式:①时间上的分隔保护,白天光合作用,晚上固氮作用;②群体细胞中的某些细胞失去光反应中心Ⅱ,而进行固氮作用;③提高过氧化物酶和超氧化物歧化酶
本文标题:沈萍版-微生物简答题《打印版》
链接地址:https://www.777doc.com/doc-1504266 .html