您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 三角形全等之倍长中线(习题及答案)
三角形全等之倍长中线(习题)例题示范例1:已知:如图,在△ABC中,AB≠AC,D,E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.ABDCEF【思路分析】读题标注:??FECDBA见中线,要倍长,倍长之后证全等.结合此题,DE=EC,点E是DC的中点,考虑倍长,有两种考虑方法:①考虑倍长FE,如图所示:②考虑倍长AE,如图所示:ABDCEF??GG??FECDBA(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF≌△CEG,由全等转移边和角,重新组织条件证明即可.【过程书写】证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,ABDCEF??GEDECDEFCEGEFEG∴△DEF≌△CEG(SAS)∴DF=CG,∠DFE=∠G∵DF=AC∴CG=AC∴∠G=∠CAE∴∠DFE=∠CAE∵DF∥AB∴∠DFE=∠BAE∴∠BAE=∠CAE∴AE平分∠BAC巩固练习1.已知:如图,在△ABC中,AB=4,AC=2,点D为BC边的中点,且AD是整数,则AD=________.DCBA2.已知:如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.3.已知:如图,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,AB=AE,AC=AF,∠BAE=∠CAF=90°.求证:EF=2AD.FEDCBAFEDCBA如图,在△ABC中,ABAC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.4.如图,在四边形ABCD中,AD∥BC,点E在BC上,点F是CD的中点,连接AF,EF,AE,若∠DAF=∠EAF,求证:AF⊥EF.思考小结1.如图,在△ABC中,AD平分∠BAC,且BD=CD.求证:AB=AC.CDBA比较下列两种不同的证明方法,并回答问题.方法1:GFEDCBAFEDBCA如图,延长AD到E,使DE=AD,连接BE在△BDE和△CDA中BDCDBDECDADEDA∴△BDE≌△CDA(SAS)∴AC=BE,∠E=∠2∵AD平分∠BAC∴∠1=∠2∴∠1=∠E∴AB=BE∴AB=AC方法2:如图,过点B作BE∥AC,交AD的延长线于点E∵BE∥AC∴∠E=∠2在△BDE和△CDA中2EBDECDABDCD∴△BDE≌△CDA(AAS)∴BE=AC∵AD平分∠BAC∴∠1=∠2∴∠1=∠E∴AB=BE∴AB=AC相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等.不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2.利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt△ABC中,∠BCA=90°,CD是斜边AB的中线.求证:CD12AB.DCBA21ECDBA21ECDBA【参考答案】巩固练习1.22.证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明△ADG≌△EDF,转角证明AB=EF)3.证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明△ABD≌△GCD,△EAF≌△GCA)4.证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明△BFE≌△CHE,转角证明BF=CG)5.证明略(提示:延长AF交BC的延长线于点G,证明△ADF≌△GCF,转角证明AF⊥EF)思考小结1.倍长中线SASAAS角2.证明略
本文标题:三角形全等之倍长中线(习题及答案)
链接地址:https://www.777doc.com/doc-1508754 .html