您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初二数学八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。推论:多边形的内角和定理:n边形的内角和等于)2(n180°;多边形的外角和定理:任意多边形的外角和等于360°。2、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为2)3(nn。二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.2.平行四边形的性质:平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对边分别相等的四边形是平行四边形③方法2:一组对边平行且相等的四边形是平行四边形④方法3:两组对角分别相等的四边形是平行四边形⑤方法4:对角线互相平分的四边形是平行四边形三、矩形1.矩形定义:有一个角是直角的平行四边形是矩形。2.矩形性质①边:对边平行且相等;②角:对角相等、邻角互补,矩形的四个角都是直角;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).3.矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.4.矩形的面积①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.四、菱形1.菱形定义:有一组邻边相等的平行四边形是菱形。2.菱形性质①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).3.菱形的判定:满足下列条件之一的四边形是矩形ABDOCADBCOCDBAO①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.4.菱形的面积①设菱形ABCD的一边长为a,高为h,则S菱形=ah;②若菱形的两对角线的长分别为a,b,则S菱形=12ab.五、正方形1.正方形定义:有一组邻边相等且有一个直角的平行四边形叫做正方形。它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。2.正方形性质①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).3.正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.4.正方形的面积①设正方形ABCD的一边长为a,则S正方形=2a;若正方形的对角线的长为a,则S正方形=212a.六、梯形1.梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形。等腰梯形:是一种特殊的梯形,它是两腰相等的梯形。特殊梯形还有直角梯形(有一个角是直角)。2.等腰梯形性质①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补;③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).⑤梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。3.等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.4.梯形的面积①设梯形ABCD的上底为a,下底为b,高为h,则S梯形=1()2abh.ABCDOFEABCD(第7题图)平行四边形练习1、一个多边形的内角和为1620°,则这个多边形对角线的条数是()A27B35C44D542.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是()A.75ºB.115ºC.65ºD.105º3.如图3,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.44.如图4,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A3:2B3:1C1:1D1:25.□ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A61°B63°C65°D67°6.过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是.7.如图7,□ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF=.8.在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.9.在□ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在□ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为.10.如图,已知:□ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BG交CE于点F,交AD于点G.求证:AE=DG.11.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.12(第2题图)第3题图第4题图第5题图ABCDEFG12.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.18C.36D.3613.如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°14.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.615.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.4B.3C.2D.16.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S417.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.18.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为或秒时.△ABP和△DCE全等.19.已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.第12题图第14题图第13题图第15题图第17题图第16题图第18题图21.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
本文标题:初二数学八下平行四边形所有知识点总结和常考题型练习题
链接地址:https://www.777doc.com/doc-1512662 .html