您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 1.1.1正弦定理课件:(比赛用)PPT)
一、创设情境1、问题的给出:2、实际问题转化为数学问题:如图,要测量小河两岸A,B两个码头的距离。可在小河一侧如在B所在一侧,选择C,为了算出AB的长,可先测出BC的长a,再用经纬仪分别测出B,C的值,那么,根据a,B,C的值,能否算出AB的长。A.B..CaA.B..Ca已知三角形的两个角和一条边,求另一条边。ACBcba想一想?中在一个直角三角形ABCAsincaAacsinBsincbBbcsinCsincc1Cccsin问题(2)上述结论是否可推广到任意三角形?若成立,如何证明?CcBbAasinsinsin(1)你有何结论?二、定理的猜想==asinAbsinBcsinC=2R.=2RbsinBB`ABCbO则设并延长交圆于连结为圆心作三角形的外接圆已知中在,2,,,,,,,''RABBAOOcABbACaBCABC.sinsinsin对任意三角形都成立CcBbAa三、定理的证明平面几何法'0''90,sinsin2ACBBBbBBR(1)文字叙述正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.(2)结构特点(3)方程的观点正弦定理实际上是已知其中三个,求另一个.能否运用向量的方法来证明正弦定理呢?和谐美、对称美.正弦定理:CcBbAasinsinsin在锐角三角形中.的夹角为与,的夹角为与,的夹角为与ABjCBjACjC90A9090由向量加法的三角形法则ABCBACABjCBjACjABjCBACjj得的数量积两边同取与,)90cos()90cos(90cosAABjCCBjACj定义)(根据向量的数量积的CcAaAcCasinsinsinsin即在锐角三角形中,可得垂直于点作过同理,sinsin,BbCcCBjCCcBbAasinsinsin也有jBACabc,于垂直作单位向量证明:过点ACjA在钝角三角形中ABCj的夹角为与的夹角为与则垂直的单位向量作与过点设CBjABjjACAA,90090AC90具体证明过程马上完成!如图:若测得a=48.1m,B=43°,C=69°,求AB。解:A=180°-(43°+69°)=68°aABsinAsinC=A.B..Ca在ABC中,由正弦定理得:a·sinCsinA∴AB=48.1·sin69°sin68°=≈48.4(m)学以致用Youtry解:105)(180CAB30sin105sin10 CcBbsinsin∵CBcbsinsin 192565..30,45,10.1bBCAc,ABC和边求角已知中在例正弦定理应用一:已知两角和任意一边,求其余两边和一角例⒉在△ABC中,已知a=2,b=,A=45°,求B和c。22变式1:在△ABC中,已知a=4,b=,A=45°,求B和c。22变式2:在△ABC中,已知a=,b=,A=45°,求B和c。22334正弦定理应用二:已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。(要注意可能有两解)290122222sinsinsinsin:0 cB aAbB BbAa 解232224264sinsin105)(150302142222sinsinsinsin:000ACa c C B aAbB BbAa 舍去或解338822426334sinsin157512060233342222sinsinsinsin:0000ACa c C B aAbB BbAa 或或解;,120,30,12)1(.10aBAbABC求已知中在.,,30,45,10)2(ABCSbCAc求已知.,2,60,30)3(00caCBA求已知点拨:已知两角和任意一边,求其余两边和一角,此时的解是唯一的.;,,,)(aBAb求已知1203012100012030121sinsinsinsin,sinsin)(BAbaBbAa解:34.,,30,45,102ABCSbCAc求)已知(,sinsinCcBb解:)(1325,105)3045(180)(180CAB)26(530sin105sin10sinsinCBcbAbcSABCsin2145sin10)26(521.,2,60,30)3(caCBA求已知,sinsinCcAa又60,30CBA:解150CB45C2230452sinsinsinsinACac;,,60,1,3)1(.2CAaBcbABC,和求已知中在。求已知ABba,45,22,32)2(0(3)20,28,120,.abA已知解这个三角形点拨:已知两边和其中一边的对角解三角形时,通常要用到三角形内角定理和定理或大边对大角定理等三角形有关性质.;,,60,1,3)1(.2CAaBcbABC,和求已知中在9030,,60,ACCBCBcb,为锐角,,sinsinCcBb解:21360sin1sinsinbBcC222bca.,45,22,32)2(ABba求已知(3)20,28,120,.abA已知解这个三角形bBaAsinsin解:232245sin32)(,大边对大角CAba12060或AsinsinbABa解:20120sin2811037.本题无解3练习2、在ABC中,若a=2bsinA,则B=()A、B、C、D、36653326或或练习1、在ABC中,若A:B:C=1:2:3,则a:b:c=()A、1:2:3B、3:2:1C、1::2D、2::133自我提高!A、等腰三角形B、直角三角形C、等腰直角三角形D、不能确定)(,sinsinsin,.3222 ABCCBAABC的形状是则若中在练习CCB二种——平面几何法向量法定理应用方法课时小结二个——已知两角和一边(只有一解)已知两边和其中一边的对角(有一解,两解,无解)一个——正弦定理CcBbAasinsinsinP144习题5.91,2,4思考题:.,,,无解两解一解式有它们之间满足什么关系及角中的两边在AbaABC
本文标题:1.1.1正弦定理课件:(比赛用)PPT)
链接地址:https://www.777doc.com/doc-1513329 .html