您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 23.1图形的旋转(第二课时)
10/14/2019河南省永城市小龙人中学朱加启在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC)然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′形状和大小有什么关系?ABCOA′B′C′OA=OA′∠AOA′=∠BOB′△ABC≌△A′B′C′一、自学质疑1、如图,如果把钟表的指针看做△OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心;是旋转角是;(2)经过旋转,点A、B、O的对应点分别是2、与旋转中心所连线段的夹角等于旋转角3、旋转前、后的两个图形;1、对应点到旋转中心的距离;如图,在正方形ABCD中,E是BC上一点,∠AEB=60°△ABE旋转后得到△ADF(1)旋转中心是哪一点?旋转的方向?旋转角为多少度?(2)∠AFD为多少度?DF的长是多少?(3)如果点G在AB的中点处,那么经过上述旋转后,点G应旋转到什么位置?(4)连接EF,三角形AEF是什么三角形?60度GFEDCBA因此,在CB的延长线上取点E′,使BE′=DE,则△ABE′为旋转后的图形.ABCDEE′如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身。正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与B重合.设点E的对应点为点E′,因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE例题示范还有别的办法吗?3.将△OAB绕点O按顺时针方向旋转90°,画出旋转后图形△OA1B1链接gspBAO如图,在正方形ABCD中,E是BC上一点,∠AEB=60°△ABE旋转后得到△ADF(1)旋转中心是哪一点?旋转的方向?旋转角为多少度?(2)∠AFD为多少度?DF的长是多少?(3)如果点G在AB的中点处,那么经过上述旋转后,点G应旋转到什么位置?(4)连接EF,三角形AEF是什么三角形?60度GFEDCBA因此,在CB的延长线上取点E′,使BE′=DE,则△ABE′为旋转后的图形.ABCDEE′如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身。正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与B重合.设点E的对应点为点E′,因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE例题示范还有别的办法吗?3.将△OAB绕点O按顺时针方向旋转90°,画出旋转后图形△OA1B1链接gspBAO如图,在正方形ABCD中,E是BC上一点,∠AEB=60°△ABE旋转后得到△ADF(1)旋转中心是哪一点?旋转的方向?旋转角为多少度?(2)∠AFD为多少度?DF的长是多少?(3)如果点G在AB的中点处,那么经过上述旋转后,点G应旋转到什么位置?(4)连接EF,三角形AEF是什么三角形?60度GFEDCBA因此,在CB的延长线上取点E′,使BE′=DE,则△ABE′为旋转后的图形.ABCDEE′如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身。正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与B重合.设点E的对应点为点E′,因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE例题示范还有别的办法吗?3.将△OAB绕点O按顺时针方向旋转90°,画出旋转后图形△OA1B1链接gspBAO通过上面的两道练习,画图形旋转的步骤是(1)画旋转;(2)找对应;→(3)连线成图。三、巩固深化:如图,E是正方形ABCD中CD边上的任意一点,以点A为中心,作出△ADE顺时针旋转90度后的图形四、链接中考:1.(2013•梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A、2B、3C、4D、1.5解:∵△ABC以点O为旋转中心,旋转180°后得到△A′B′C′,∴△ABC≌△A′B′C′,∴B′C′=BC=4,∵D′E′是△A′B′C′的中位线,∴D′E′=12B′C′=12×4=2.链接中考2.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是.解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形3.(2013•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()解:∵∠B=35°,∠C=90°,∴∠BAC=90°-∠B=90°-35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°-∠BAC=180°-55°=125°,∴旋转角等于125°4.(2013•黄石)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()23A、B、5C、4D、31解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°-30°=60°,∴∠ACD=90°-60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=(1/2)AB=(1/2)×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7-3=4,在Rt△AOD1中,AD1=AO2+D1O2=32+42=5.故选B.5.(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()度A、30B、35C、40D、50解:∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAC=∠B′AC′,∵CC′∥AB,∠CAB=75°,∴∠ACC′=∠CAB=75°,∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,∵∠BAB′=∠BAC-∠B′AC,∠CAC′=∠B′AC′-∠B′AC,∴∠BAB′=∠CAC′=30°.故选A.6.(2013•毕节地区)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中AB=AD∠ABF=∠ADEBF=DE,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE2=AD2+DE2=100,∴AE=10∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2/2=12×100=50(平方单位).7.(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°-∠C-∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中AB=AC∠F′AB=∠E′ACAF′=AE′,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°-2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.8.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.分析:(1)根据旋转的性质得CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,则∠CD′E=30°,然后根据平行线的性质即可得到∠α=30°;(2)由G为BC中点可得CG=CE,根据旋转的性质得∠D′CE′=∠DCE=90°,CE=CE′CE,则∠GCD′=∠DCE′=90°+α,然后根据“SAS”可判断△GCD′≌△DCE′,则GD′=E′D;(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD
本文标题:23.1图形的旋转(第二课时)
链接地址:https://www.777doc.com/doc-1515519 .html