您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 相似三角形基础训练及答案
相似三角形板块训练试题及答案一、选择题1△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为()(A)1:2(B)1:4(C)2:1(D)4:12下图1,给出下列条件:①BACD;②ADCACB;③ACABCDBC;④2ACADAB.其中单独能够判定ABCACD△∽△的个数为()A.1B.2C.3D.43上2图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:()A.0个B.1个C.2个D.3个4上图3若△ABC∽△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4B.1∶2C.2∶1D.1∶25小明发现自己的一本书的宽与长之比为黄金比。书的长为20cm,则它的宽约为()A.12.36cmB.13.6cmC.32.36cmD.7.64cm6.若21CDDE,,则BC=()A.2B.433C.23D.437上图4,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12mB.10mC.8mD.7m8美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.下图1,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cmB.6cmC.8cmD.10cm9上图2,小正方形的边长均为1,则下列图中的三角形与ABC△相似的是()10下图1,CDAB于D,一定能确定ABC△为直角三角形的条件的个数是()①1A,②CDDBADCD,③290B°,④345BCACAB∶∶∶∶,⑤CDACBDACA.1B.2C.3D.4A.11上图2,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm212上图3,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN,B.3DE=2MN,C.3∠A=2∠FD.2∠A=3∠F13下图1,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则DOAO等于()A.352B.31C.32D.2114上图2,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DEAC⊥,EFAB⊥,FDBC⊥,则DEF△的面积与ABC△的面积之比等于()A.1∶3B.2∶3C.3∶2D.3∶315上图3.一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张16上图4,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24mB.25mC.28mD.30m17下图1,D、E分别是AB、AC的中点,则:ADEABCSS△△()A.1∶2B.1∶3C.1∶4D.2∶318上图2,在RtABC△中,90ACB°,3BC,4AC,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()A.32B.76C.256D.219上图3,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.1:2B.1:4C.1:5D.1:620.上图4,已知点EF、分别是ABC△中ACAB、边的中点,BECF、相交于点G,2FG,则CF的长为()A.4B.4.5C.5D.6AFECB二、填空题1.下图1,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=________.2上图2是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm.(结果精确到0.1cm)3上图3,ABC△与AEF△中,ABAEBCEFBEAB,,,交EF于D.给出下列结论:①AFCC;②DFCF;③ADEFDB△∽△;④BFDCAF.其中正确的结论是(填写所有正确结论的序号).4上图4,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.5下图1,三角尺在灯泡O的照射下在墙上形成影子,.现测得20cm50cmOAOA,,这个三角尺的周长与它在墙上形成的影子的周长的比是.6上图2,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是.7.上图3,RtABC△中,90ACB°,直线EFBD∥,交AB于点E,交AC于点G,交AD于点F,若13AEGEBCGSS△四边形,则CFAD.8上图4将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是9.ABC△与DEF△相似且面积比为4∶25,则ABC△与DEF△的相似比为.10.下图1,AB、两处被池塘隔开,为了测量AB、两处的距离,在AB外选一适当的点C,并分别取线段ACBC、的中点EF、,测得EF=20m,则AB=______m.11.上图2,△ABC与△DEF是位似图形,位似比为2∶3,已知AB=4,则DE的长为____.12上图3,在ABC△中,DEBC∥,若123ADDEBD,,,则BC.13.上图4,ABC△与ABC△是位似图形,则位似中心的坐标是14.在□ABCD中,E在DC上,若:1:2DEEC,则:BFBE.三、解答题1.如图,在矩形ABCD中,ABEDEF△∽△,692ABAEDE,,,求EF的长.2如图,DE∥BC,AD=4,DB=8,DE=3,(1)求ADAB的值,(2)求BC的长3如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.4图,在ABC△中,36ABACA,°,线段AB的垂直平分线交AB于D,交AC于E,连接BE.(1)求证:∠CBE=36°;(2)求证:2AEACEC.相似三角形板块训练试题及答案一、选择题1B2C3D4B5A6.B7A8C9A10C11C12B13D14A15C16D17C18B19B20.二、填空题1.【答案】182【答案】6.2.3【答案】①,③,④4【答案】(2,0)5【答案】256【答案】144;7.【答案】128【答案】712或2;9.【答案】2:5.10答案:4011.【答案】612【答案】813.【答案】(9,0)14.【答案】5:3三、解答题1.解:∵四边形ABCD是矩形,AB=6∴∠A=∠D=90°,DC=AB=6又∵AE=9∴在Rt△ABE中,由勾股定理得:BE=117692222ABAE∵ABEDEF△∽△,∴EFBEDEAB,即EF11726∴EF=31172解:(1)4812ABADDB=+=+=所以41123ADAB==(2)因为DEBC∥,所以ADEABC△∽△所以DEADBCAB=因为3DE=所以313BC=所以9BC=3证明:(1)∵3,2ACDC63,42BCCE∴.ACBCDCCE又∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.4..证明:(1)∵DE是AB的垂直平分线,∴EAEB,∴36EBAA°.∵36ABACA,°,∴72ABCC°.∴36CBEABCEBA°.(2)由(1)得,在△BCE中,7236CCBE°,°,∴72BECC°,∴BCBEAE.在△ABC与△BEC中,CBEA,CC,∴ABCBEC△∽△.∴ACBCBCEC,即2BCACEC.故2AEACEC.
本文标题:相似三角形基础训练及答案
链接地址:https://www.777doc.com/doc-1538985 .html