您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 高考数学极坐标系典型题目训练
极坐标系与参数方程姓名:_______________班级:_______________考号:_______________1、选修4—4:若以直角坐标系的为极点,为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程是.(Ⅰ)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(Ⅱ)若直线的参数方程为(为参数),当直线与曲线相交于两点,求.2、选修4—4:在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.3、选修4—4:在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.4、选修4—4:直角坐标系中,曲线(为参数),在以为极点,轴的非负半轴为极轴的极坐标系中,直线.(1)若,判断直线与曲线的位置关系;(2)若曲线上存在点到直线的距离为,求实数的取值范围.5、选修4—4:在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线:交于,两点.(Ⅰ)求的长;(Ⅱ)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.6、选修4—4:在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线过点的直线(为参数)与曲线相交于点两点.(1)求曲线的平面直角坐标系方程和直线的普通方程;(2)若成等比数列,求实数的值.7、选修4—4:在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(I)写出圆的直角坐标方程;(II)为直线上一动点,当到圆心的距离最小时,求的直角坐标.8、选修4—4:已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.9、选修4—4:已知直线:(为参数),:(为参数),(Ⅰ)当=时,求与的交点坐标;(Ⅱ)过坐标原点作的垂线,垂足为,为中点,当变化时,求点的轨迹的参数方程,并指出它是什么曲线。10、选修4—4:坐标系与参数方程平面直角坐标系中,将曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线.以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求和公共弦的长度.1、解:(Ⅰ)由,得,.……………4分所以曲线表示顶点在原点,焦点在轴上的抛物线.……………………5分(Ⅱ)将…………………………6分代入得,…………………8分…………………………10分解法二:代入得,……………8分……………10分2、(Ⅱ)设为点的极坐标,则有,解得.设为点的极坐标,则有解得由于,所以,所以线段的长为2.(10分)3、试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.4、解:(1)曲线的直角坐标方程为:,是一个圆;直线的直角坐标方程为:圆心到直线的距离,所以直线与圆相切……………5分(2)由已知可得:圆心到直线的距离解得……………10分5、解:(Ⅰ)直线l的参数方程为(t为参数),代入曲线C的方程得.设点A,B对应的参数分别为,则,,所以.……………………………………………(5分)(Ⅱ)由极坐标与直角坐标互化公式得点P的直角坐标为,所以点P在直线l上,中点M对应参数为,由参数t的几何意义,所以点P到线段AB中点M的距离.……(10分)6、7、【解析】(Ⅰ)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程ρ=4cosθ.解,得ρ=2,θ=±,故圆C1与圆C2交点的坐标为(2,),(2,-).(Ⅱ)圆C1与圆C2交点都在直线x=1上,于是圆C1与C2的公共弦的参数方程为-≤θ≤.8、【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),利用截距式即可得出直线AF2的直角坐标方程.(2)直线AF2的斜率为,可得直线l的斜率为.直线l的方程为:,代入椭圆的方程化为=0,t1+t2=,利用||MF1|﹣|NF1||=|t1+t2|即可得出.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.【点评】本题考查了椭圆的参数方程、直线的截距式与参数方程、参数的应用,考查了推理能力与计算能力,属于中档题.9、解、(Ⅰ)当时,的普通方程为,的普通方程为。联立方程组,解得与的交点为(1,0)。---6分(Ⅱ)的普通方程为。A点坐标为,故当变化时,P点轨迹的参数方程为:,P点轨迹的普通方程为。故P点轨迹是圆心为,半径为的圆。----12分10、选修4—4:坐标系与参数方程解:曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半得到,然后整个图象向右平移个单位得到,最后横坐标不变,纵坐标变为原来的2倍得到,所以为,又为,即,所以和公共弦所在直线为,所以到距离为,所以公共弦长为.
本文标题:高考数学极坐标系典型题目训练
链接地址:https://www.777doc.com/doc-1541805 .html