您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 24.1.4圆周角课件PPT
24.1圆的有关性质第二十四章圆24.1.4圆周角学习目标1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.3.理解掌握圆周角定理的推论及其证明过程和运用.重点圆周角的概念和圆周角定理.难点用分类讨论的思想证明圆周角定理,尤其是分类标准的确定.1共24张问题1什么叫圆心角?指出图中的圆心角?顶点在圆心的角叫圆心角,∠BOC.导入新课问题2如图,∠BAC的顶点和边有哪些特点?A∠BAC的顶点在☉O上,角的两边分别交☉O于B、C两点.复习引入2共24张顶点在圆上,并且两边都与圆相交的角叫做圆周角.(两个条件必须同时具备,缺一不可)讲授新课圆周角的定义一3共24张·COAB·COB·COBAA·COAB·COB·COBAA判一判:下列各图中的∠BAC是否为圆周角并简述理由.(2)(1)(3)(5)(6)顶点不在圆上顶点不在圆上边AC没有和圆相交√√√4共24张如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系.12BACBOC圆周角定理及其推论二测量与猜测5共24张圆心O在∠BAC的内部圆心O在∠BAC的一边上圆心O在∠BAC的外部推导与论证6共24张圆心O在∠BAC的一边上(特殊情形)OA=OC∠A=∠C∠BOC=∠A+∠C12BACBOC7共24张OABDOACDOABCD圆心O在∠BAC的内部OACDOABDBADBOD12DACDOC12BACBADDACBODDOCBOC11()228共24张DACDOC12OABDCOADCOABDCOADOABDCOADOABD圆心O在∠BAC的外部9共24张圆周角定理:一条弧所对的圆周角等于该弧它所对的圆心角的一半;圆周角定理要点归纳10共24张问题1如图,OB,OC都是⊙O的半径,点A,D是上任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC相等吗?请说明理由.D互动探究QBACBOC1,21,2BDCBOC∴∠BAC=∠BDC相等11共24张DABOCEF问题2如图,若CD=EF,∠A与∠B相等吗?相等.CODEOFQ,,ACODBEOF1122.AB想一想:(1)反过来,若∠A=∠B,那么成立吗?(2)若CD是直径,你能求出∠A的度数吗?⌒⌒⌒⌒∵CD=EF⌒⌒CD=EF12共24张圆周角定理的推论同弧或等弧所对的圆周角相等.知识要点A1A2A313共24张试一试:1.如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的同侧,∠BAC=35º.(1)∠BOC=º,理由是;(2)∠BDC=º,理由是.7035同弧所对的圆周角相等一条弧所对的圆周角等于它所对的圆心角的一半14共24张(1)完成下列填空:∠1=.∠2=.∠3=.∠5=.2.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.∠4∠8∠6∠7ABCDO1234567815共24张想一想如图,线段AB是☉O的直径,点C是☉O上的任意一点(除点A、B外),那么,∠ACB就是直径AB所对的圆周角,想一想,∠ACB会是怎样的角?·OACB解:∵OA=OB=OC,∴△AOC、△BOC都是等腰三角形.∴∠OAC=∠OCA,∠OBC=∠OCB.又∵∠OAC+∠OBC+∠ACB=180°.∴∠ACB=∠OCA+∠OCB=180°÷2=90°.16共24张圆周角和直径的关系圆周角和直径的关系:半圆或直径所对的圆周角都相等,都等于90°.知识要点17共24张典例精析例1如图,AB是☉O的直径,∠A=80°.求∠ABC的大小.OCAB解:∵AB是☉O的直径,∴∠ACB=90°(直径所对的圆周角等于90°.)∴∠ABC=180°-∠A-∠ACB=180°-90°-80°=10°.18共24张例2:如图,⊙O的直径AC为10cm,弦AD为6cm.(1)求DC的长;(2)若∠ADC的平分线交⊙O于B,求AB、BC的长.B解:(1)∵AC是直径,∴∠ADC=90°.在Rt△ADC中,22221068;DCACAD19共24张在Rt△ABC中,AB2+BC2=AC2,(2)∵AC是直径,∴∠ABC=90°.∵BD平分∠ADC,∴∠ADB=∠CDB.又∵∠ACB=∠ADB,∠BAC=∠BDC.∴∠BAC=∠ACB,∴AB=BC.221052(cm).22ABBCACB解答圆周角有关问题时,若题中出现“直径”这个条件,则考虑构造直角三角形来求解.归纳20共24张1.如图,分别求出图中∠x的大小.60°x30°20°x解:(1)∵同弧所对圆周角相等,∴∠x=60°.ADBEC(2)连接BF,F∵同弧所对圆周角相等,∴∠ABF=∠D=20°,∠FBC=∠E=30°.∴∠x=∠ABF+∠FBC=50°.练一练21共24张如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°解析:∵BD是⊙O的直径,∴∠BCD=90°.∵∠CBD=30°,∴∠D=60°,∴∠A=∠D=60°.故选C.方法总结:在圆中,如果有直径,一般要找直径所对的圆周角,构造直角三角形解题.练一练C22共24张3.如图,AB是⊙O的直径,弦CD交AB于点P,∠ACD=60°,∠ADC=70°.求∠APC的度数..OADCPB解:连接BC,则∠ACB=90°,∠DCB=∠ACB-∠ACD=90°-60°=30°.又∵∠BAD=∠DCB=30°,∴∠APC=∠BAD+∠ADC=30°+70°=100°.23共24张圆心角类比圆周角圆周角定义圆周角定理圆周角定理的推论课堂小结在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.90°的圆周角所对的弦是直径;1.顶点在圆上,2.两边都与圆相交的角(二者必须同时具备)圆周角与直线的关系半圆或直径所对的圆周角都相等,都等于90°(直角).作业布置教材第88页练习第3题,教材第89页习题第5、13、14题.24共24张
本文标题:24.1.4圆周角课件PPT
链接地址:https://www.777doc.com/doc-1546120 .html