您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 3.1随机事件的概率
炽热的、多彩的的七月在双台风过后悄然离去,欣然回眸这被高温模式掀开的半个暑假,心里满满的感动与欣喜。七月是炽热的,每天持续三十多度的高温。每天起床后,总会被那轮火热的太阳吓倒。七八点左右,它已经开始在发威了。想要上街买菜,不带把伞都不行。带上伞后,买菜很不方便。左手十几袋,右手一把伞、一个钱包,左右为难的我总觉得很狼狈,真恨不得插上翅膀快快飞回家中,好躲过这猛烈的太阳的暴晒。后来学乖了,为了避免与太阳的亲密接触,把买菜的时间改到了下午。等到太阳依依不舍地下山后,我才慢吞吞地上街,边走边观花,遇到喜欢的店铺偶尔会停下脚步浏览一番,却也没有进去的念想。假期的光阴,我经常利用上街买菜的时间慢慢地打量街上的每一间店面,哪间经常换店家,哪间是老店铺,我都一清二楚。只是,我却忘记了自己最后一次逛街的时间是在哪一年了?自从淘宝出来后,我便成了不折不扣的剁手党,每个月都要在网里尽情狂买一通。现在想想:再过几年,这些店铺是不是都会被时间淘汰掉呢?望着人烟稀少的店面,我心里涌起了无限的感慨。除了买菜时间是炽热的,就连在家里做饭也会被热得受不了。想要正儿八经地做一顿饭,对我来说并不是一件难一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.接43、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.1名数学家=10个师美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.•在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;•我们来看下面的一些事件:•(1)“导体通电时,发热”;•(2)“抛一块石头,下落”;•(3)“标准大气压下且温度低于0℃时,冰融化”;•(4)“海南七月下雪”;•(5)“某人射击一次,中靶”;•(6)“掷一枚硬币,出现正面”。•上面事件发生与否,各有什么特点?一.随机事件:•在一定条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件.•在一定条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件.•在一定条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件;简称随机事件.•确定事件和随机事件统称为事件,一般用大写字母A,B,C……表示.例1:指出下列事件是必然事件,不可能事件,还是随机事件?•(1)某同学竞选学生会主席的成功性;•(2)当x是实数时,x2≥0;•(3)技术充分发达后,不需要任何能量的“永动机”将会出现;•(4)一个电影院某天的上座率超过50%.•(5)某人给朋友打电话,却忘记了电话号码的最后一个数,就随意的按了一个数字,刚好是朋友的电话号码。二.概率的定义:对于随机事件,知道它发生的可能性大小是非常重要的.用概率度量随机事件发生的可能性大小能为我们的决策提供关键性的依据.那么,如何才能获得随机事件发生的概率呢?必然事件发生的概率为1;不可能事件发生的概率为0;随机事件发生的概率P(A)∈(0,1).第一步:每人各取一枚同样的硬币,做10次掷硬币试验,记录正面向上的次数和比例,填入下表中:试验:做抛掷一枚硬币的试验,观察它落地时哪一个面朝上姓名试验总次数正面朝上总次数正面朝上的比例思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步:由组长把本小组同学的试验结果统计一下,填入下表:组次试验总次数正面朝上总次数正面朝上的比例思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?第三步:把全班实验结果收集起来,也用条形图表示.班级试验总次数正面朝上总次数正面朝上的比例1.掷硬币试验:第一步:……第二步:……第三步:……第四步:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示.正面出现次数的频数表第五步:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.随着试验次数的增加,正面朝上的频率稳定于0.5附近.★频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的频率.Ann频率的取值范围是[0,1].2.由特殊的事件转到一般事件:计算机模拟掷硬币试验一般说来,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的一个常数上.3.解释这个常数代表的意义:这个常数越接近于1,表明事件A发生的频率越大,频数就越多,也就是它发生的可能性越大;反过来,事件发生的可能性越小,频数就越少,频率就越小,这个常数也就越小.因此,我们可以用这个常数来度量事件A发生的可能性的大小.对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。因此,可以用频率fn(A)来估计概率P(A).频率与概率的区别与联系:(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的近似值.(2)频率本身是随机的,在试验前不能确定.(3)概率是一个确定的数,是客观存在的,与每次试验无关.比如一辆汽车在一年内出交通事故的概率就是未知的,保险公司收取汽车的保险费就与此概率有关,一般以当地交通部门的统计数据为依据,得到该事件发生的频率作为一年内出交通事故的概率的估计值.做同样次数的重复试验得到事件的频率会不同,比如全班每人做了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.比如,如果一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次试验无关.注意以下几点:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率;A(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此.10AP三.求随机事件概率的必要性:知道事件的概率可以为人们做决策提供依据.概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.例如天气预报报道“今天降水的概率是10%”,可能绝大多数人出门都不会带雨具;而如果天气预报报道“今天降水的概率是90%”,那么大多数人出门都会带雨具.•例1盒中装有4个白球5个黑球,从中任意的取出一个球。(1)“取出的是黄球”是什么事件?概率是多少?(2)“取出的是白球”是什么事件?概率是多少?(3)“取出的是白球或者是黑球”是什么事件?概率是多少?是不可能事件,概率是0是随机事件,概率是4/9是必然事件,概率是1例2某射击手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m9194592178455击中靶心的频率(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?0.920.900.950.900.910.89解(2)由于频率稳定在常数0.90,所以这个射手射击一次,击中靶心的概率约是0.90。小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而估计。例3某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,则此人中靶的概率大约是________,假设此人射击1次,试问中靶的概率约为______,中10环的概率约为_________.0.90.90.2课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对BC练习:1、下列事件:(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角。(2)在标准大气压下,水在90℃沸腾。(3)射击运动员射击一次命中10环。(4)同时掷两颗骰子,出现的点数之和不超过12。其中是随机事件的有()A、(1)B、(1)(2)C、(1)(3)D、(2)(4)CA2、下列事件:(1)如果a、b∈R,则a+b=b+a。(2)如果ab0,则。(3)我班有一位同学的年龄小于18且大于20。(4)没有水份,黄豆能发芽。其中是必然事件的有()A、(1)(2)B、(1)C、(2)D、(2)(3)a1b13、下列事件:(1)a,b∈R且ab,则a-b∈R。(2)抛一石块,石块飞出地球。(3)掷一枚硬币,正面向上。(4)掷一颗骰子出现点8。其中是不可能事件的是()A、(1)(2)B、(2)(3)C、(2)(4)D、(1)(4)C4、下面四个事件:(1)在地球上观看:太阳升于西方,而落于东方。(2)明天是晴天。(3)下午刮6级阵风。(4)地球不停地转动。其中随机事件有()A、(1)(2)B、(2)(3)C、(3)(4)D、(1)(4)B5、随机事件在n次试验中发生了m次,则()(A)0<m<n(B)0<n<m(C)0≤m≤n(D)0≤n≤mC课堂小结1.随机事件;2.频数和频率;3.概率;4.频率与概率的区别与联系.作业:1.教学任务分析:(1)正确理解概率的含义.(2)了解概率在实际问题中的应用.(3)进一步理解概率统计中的随机性与规律性的关系.2.教学重点与难点:重点:概率的正确理解及其在实际中的应用.难点:随机试验结果的随机性与规律性的关系.3.〖教学情境设计〗[复习回顾]你能回忆一下随机事件发生的概率的定义吗?对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。1.概率的正确理解:〖思考1〗有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?做做试验试试看.点评:这种想法是错误的.因为连续两次抛掷一枚质地均匀的硬币仅仅是做两次重复的试验,试验的结果仍然是随机的,当然可以两次均出现正面朝上或两次均出现反面朝上.〖思考2〗连续两次抛掷一枚质地均匀的硬币,你能说说:两次均正面朝上、一次正面朝上,一次反面朝上、两次均反面朝上的概率分别是多少吗?因为连续两次抛掷一枚质地均匀的硬币,可能出现的结果有四种:正正、正反、反正、反反.所以P(两次均正面朝上)=0.25;P
本文标题:3.1随机事件的概率
链接地址:https://www.777doc.com/doc-1565468 .html