您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > ansys有限元分析软件-第二章-制订分析方案-xia
有限元分析软件ANSYS中国矿业大学(北京)夏昌敬制订分析方案通常考虑的分析因素制订分析方案是很重要的。一般考虑下列问题:.分析领域.分析目标.线性/非线性问题.静力/动力问题.分析细节的考虑.几何模型对称性•奇异•单元类型•网格密度•单位制•材料特性•载荷•求解器通常考虑的分析因素制订得分析方案好坏直接影响分析的精度和成本(人耗工时,计算机资源等),但通常情况下精度和成本是相互冲突,特别是分析较大规模和具有切割边界的模型时更为明显。一个糟糕的分析方案可能导致分析资源紧张和分析方式受得限制。确定合适的分析学科领域.实体运动,承受压力,或实体间存在接触.施加热、高温或存在温度变化.恒定的磁场或磁场.电流(直流或交流).气(液)体的运动,或受限制的气体/液体.以上各种情况的耦合结构热磁流体电耦合场准则分析目的分析目的直接决定分析近似模型的确定。分析目的,就是这样一个问题的答案:“利用FEA我想研究结构哪些方面的情况?”结构分析:.要想得到极高精度的应力结果,必须保证影响精度的任何结构部位有理想的单元网格,不对几何形状进行细节上的简化。应力收敛应当得到保证,而任何位置所作的任何简化都可能引起明显误差。.在忽略细节的情况下,使用相对较粗糙的单元网格计算转角和法向应力。.复杂的模型要求具有较好的均匀单元网格,并允许忽略细节因素。准则分析目的模态分析:.简单模态振型和频率可以忽略细节因素而使用相对较粗糙的单元网格进行分析计算。热分析:.温度分布梯度变化不大时可以忽略细节,划分均匀且相对稀疏的单元网格。.当温度场梯度较大时,在梯度较大的方向划分细密的单元网格。梯度越大,单元划分就越细密。.利用一个能同时模拟两个物理场的模型求解温度和热耗散应力,但热和应力模型都是相对独立的。线性/非线性分析“我的物理系统是在线性还是非线性状态下工作?线性求解能满足我的需要吗?如果不能,必须考虑哪种非线性特性?”许多情况和物理现象都要求进行非线性计算。(a)订书钉Fut0t1t2t3Fu(b)木制书架b1b2(c)气动带Fu线性/非线性分析1.几何非线性2.材料非线性3.不断变化的工作状态造成的非线性非线性最大的特性就是变结构刚度。它由多种原因引起的,其中主要有以下三个方面的因素:线性/非线性分析.几何非线性—大变形/大转角―当结构位移相对于结构最小尺寸显得较大时,该因素不可忽略。如,钩鱼杆前稍承受较小的横向载荷时,会产生很大的弯曲变形。随着载荷增加,钩鱼杆的变形增大而使弯矩的力臂减小,结构刚度增加。ABFTIPuTIPAB准则线性/非线性分析.几何非线性(续)应力刚化(也称作几何或微分刚化)—如果一个方向的应力明显引起其他方向的刚度时,这个效应十分重要。受拉缆绳或薄膜,或者旋转结构都是典型的例子。ANSYS只要作简单设置就能将几何非线性考虑进来,并建议完全不考虑几何非线性时也最好打开应力刚化开关。线性/非线性分析•材料非线性–线弹性是基于材料的应力和应变关系是常数关系的假设―“弹性模量”或“杨氏模量”为常数。–因此,非线性材料应力-应变关系是非线性的。应变应力弹性模量(EX)应变应力屈服点..材料极限塑性应变线性/非线性分析•材料非线性(续)–实际当中,没有那种材料的应力-应变关系是完全遵循线性关系的,线性假设只不过是一种近似处理。对于大多数工程材料而言,在外载荷不足使结构破坏情况下,这种近似是非常好的,能较好地确定设计中的许可应力或应力限值。–ANSYS规定的非线性材料特性:.塑性—永久的,不随时间变化的变形.蠕变—永久的,随时间变化的变形.非线性弹性.粘弹—类似玻璃的材料.超弹—类似于橡胶的材料线性/非线性分析•材料非线性(续)–一些结构存在局部屈服,即在一些小的区域内应力超过了屈服极限(“弹性极限”)。与结构线性假设相反,充分考虑材料非线性特性并不会改变远离屈服区域的应力场,甚至不改变这些区域内的总应变(弹性和塑性应变之和)。低周疲劳破坏计算完全不受其影响。仅仅在孔周围发生屈曲线性/非线性分析•接触和其它状态改变的非线性这类非线性特性是随状态变化的,例如,只能承受张力的缆索的松驰与张紧;滚轮与支撑的接触与脱开;冻土的冻结与解冻。随着它们状态的变化,它们的刚度在不同值之间显著变化。静力/动力分析静力求解能否满足你的分析要求?如果不能,应当进行那种动力分析?动力分析的所有载荷都是随时间变化的,但在许多情况下动力影响可以忽略不计。.一般情况下,激励频率低于结构最小固有频率的1/3时静力求解就足够了。.惯性力是动力问题不同于静力问题的关键之处。准则高效率建模技术在建立分析模型之前必须制订好建模方案:–必须考虑那些细节问题?–对称/反对称/轴对称?–模型中存在应力奇异?–选用那种类型的单元?.线单元.壳单元.X-Y平面单元-平面应力或应变单元-轴对称单元-谐单元.实体单元.专用单元.线性单元/高阶单元/P单元.四边形单元/三角形单元,块单元/四面体单元高效率建模技术-细节处理.对于分析不重要的细节不应当包含在分析模型中。当从CAD系统传一个模型到ANSYS程序中时往往可以作大量的简化处理。.然而,诸如倒角或孔等细节可以是最大应力出现的位置,这些细节对于你的分析目的是十分重要的。带倒角不带倒角准则高效率建模技术-对称性模型对称—当物理系统的形状、材料和载荷具有对称性时,就可以只对实际结构中具有代表性的部分或截面进行建模分析,再将结果映射到整个模型上,就能获得相同精度的结果。物理系统对称分析要求具有以下对称性条件:–几何结构对称–材料特性对称–具有零位移约束–存在非零位移约束定义高效率建模技术-对称性模型对称类型轴对称即绕某一轴线存在对称性,这类结构如:电灯泡,直管,圆锥体,圆盘和圆屋顶。对称面就是旋转形成结构的横截面,它可以在任何位置。大多数轴对称分析求解必须假定非零约束(边界),集中力、压力和体载荷均具有轴对称。然而,如果载荷不存在轴对称性,并且是线性分析,可以将载荷分成简谐成分,进行独立求解(然后进行叠加)。定义高效率建模技术-对称性模型对称类型旋转对称即结构由绕轴分布的几个重复部分组成,诸如涡轮叶片这类物体。大多数旋转对称分析求解要求非零位移约束(边界),集中力、压力和体载荷应具有对称性。然而,如果载荷不对称分布,并且如果是线性分析,它们可以利用周期对称求解。定义高效率建模技术-对称性模型对称类型平面或镜面对称即结构的一半与另一半成镜面映射关系,对称位置(镜面)称为对称平面。大多数平面对称分析求解要求非零位移约束(边界),集中力、压力和体力应当对称。但是,如果这些载荷不对称,并且是线性分析,它们可以分成对称或反对称问题进行独立求解。定义该图显示了镜面对称和旋转对称高效率建模技术-对称性模型对称类型重复或平移对称即结构是由沿一直线分布的重复部分组成,诸如带有均匀分布冷却节的长管等结构。该对称要求非零位移约束,集中力、压力和体载荷应具有对称性。一个结构可能由多个对称平面,这样就可以利用对称性建立一个很小的等效分析模型。定义图示模型具有镜面对称(2X)和重复对称高效率建模技术-对称性模型.在实际当中,可以利用对称模型进行分析能获得更好的分析结果,因为可以建立更精确、综合考虑各细节的模型。准则高效率建模技术-对称性模型.在某些情况下,仅仅是那些较次要的结构细节破坏了结构对称性。有时,这些细节可以忽略(或认为它们是对称的),进而利用对称性的优点建立更小的分析模型。这样计算获得结果的精度损失是很难估计的。高效率建模技术-应力奇异应力奇异是有限元模型中由于几何构造或载荷引起弹性理论计算应力值无限大。即使是奇异点,材料的非线性特性不可能允许应力值出现无限增大情况,在理论上总体应变也是有限的(许多设计准则都是根据应力制订的,例如设计疲劳曲线,但实际上是基于应变制订的)。在应力奇异处:.单元网格越是细化,越引起计算应力无限增加,并且不再收敛。.网格疏密不均匀时网格离散误差也大小不一(自适应网格划分结果是失败的或者网格错误)。定义PP/AAsA0,高效率建模技术-应力奇异高效率建模技术-应力奇异一般应力奇异发生情形:.添加在节点上的集中载荷(集中力)与施加在与该节点相连单元上的均布或变化的面载荷(压力)等相当的话,这些节点处就成为应力奇异点。.离散约束点导致非零反力的出现,就如同在节点上施加一集中力,这时约束点也就成为应力奇异点。.锐利(零半径倒角)拐角处。不常见的应力奇异情形:.由于在划分单元网格时出错,模型中存在的“裂缝”。.曲边单元中处在极不理想位置的中间点(ANSYS单元形状检查会发出警告)。.严重扭曲的单元(ANSYS单元形状检查会发出警告)。高效率建模技术-应力奇异实际结构中并不存在应力奇异点―它们是由于工程分析过程进行简化处理而引起的。没有任何制造出来的部件是具有非常锐利的零半径的倒角,所有载荷都是通过有限大小的压力面来添加或传递到真实部件上去的。.好的有限元模型仍然可能存在应力奇异,但分析者必须知道应力异附近区域的应变和应力是无效的。FEA模型还可以给出结构承载响应(甚至是应力奇异点邻近区域)的其它许多有用信息。如何处理应力异常?如果离感兴趣的区域较远,可以在观察结果时不激活受影响区域,忽略应力异常的现象。如果在感兴趣的区域,需要做如下纠正:在尖角处增加倒角,重新进行分析。用等效压力荷载代替集中力荷载。将位移约束散布到一批节点上。准则.....单元种类常用单元的形状点(质量)线(弹簧,梁,杆,间隙)面(薄壳,二维实体,轴对称实体)线性二次体(三维实体)线性二次.................................单元种类在单元手册(资料或在线帮助)中,ANSYS单元库有100多种单元类型,其中许多单元具有好几种可选择特性来胜任不同的功能。你要做的工作就是将单元的选择范围缩小到少数几个单元上。具体单元名称单元图示ANSYS单元名称单元特性(类别,编号)准则单元种类在结构分析中,结构的应力状态决定单元类型的选择。选择维数最低的单元去获得预期的结果(尽量做到能选择点而不选择线,能选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实体)。对于复杂结构,应当考虑建立两个或者更多的不同复杂程度的模型。你可以建立简单模型,对结构承载状态或采用不同分析选项作实验性探讨。•线单元:–Beam(梁)单元是用于螺栓(杆),薄壁管件,C形截面构件,角钢或者狭长薄膜构件(只有膜应力和弯应力的情况)等模型。–Spar(杆)单元是用于弹簧,螺杆,预应力螺杆和薄膜桁架等模型。–Spring单元是用于弹簧,螺杆,或细长构件,或通过刚度等效替代复杂结构等模型。主要单元类型举例•壳单元:–Shell(壳)单元用于薄面板或曲面模型。壳单元分析应用的基本原则是每块面板的主尺寸不低于其厚度的10倍。准则主要单元类型举例•X-Y平面单元:在整体笛卡尔X-Y平面内(模型必须建在此面内),有几种类型的ANSYS单元可以选用。其中任何一种单元类型只允许有平面应力、平面应变、轴对称、和/或者谐结构特性。平面应力或应变:OKNJMPLIIJK,L,OPNMTriangularOptionY(orAxial)X(orRadial)主要单元类型举例–平面应力假定在Z方向上的应力为零,主要有以下特点:当Z方向上的几何尺寸远远小于X和Y方向上的尺寸才有效。所有的载荷均作用在XY平面内。在Z方向上存在应变。运动只在XY平面内发生。允许具有任意厚度(Z方向上)。平面应力分析是用来分析诸如承受面内载荷的平板、承受压力或远离中心载荷的薄圆盘等结构。主要单元类型举例–平面应变假定在Z方向的应变为零,主要具有以下特点:当Z方向上的几何尺寸远远大于X和Y方向上的尺寸才有效。所有的载荷均作用在XY平面内。在Z方向上存在应力。运动只在XY平面内发生。平面应变分析是用于分析那种一个方向的尺寸(指定为总体Z方向)远远大于其它两个方向的尺寸,并且垂直于Z轴的横截面是不变的。主要单元类型举例–轴对称假定三维实体模型是由XY面内的横截面绕Y轴旋转360o形成的(管,锥体
本文标题:ansys有限元分析软件-第二章-制订分析方案-xia
链接地址:https://www.777doc.com/doc-1572561 .html