您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2019-2020学年唐山市丰南区九年级上期中数学试卷(有答案)(已纠错)
//2019-2020学年河北省唐山市丰南区九年级(上)期中数学试卷一、选择题(共16小题,每小题2分,满分42分)1.(2分)已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.2.(2分)将抛物线y=4x2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A.y=4(x+1)2+3B.y=4(x+1)2﹣3C.y=4(x﹣1)2+3D.y=4(x﹣1)2﹣33.(2分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣14.(2分)一元二次方程5x2﹣2x=0,最适当的解法是()A.因式分解法B.配方法C.公式法D.直接开平方法5.(2分)二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠06.(2分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°7.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=48.(3分)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.49.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比//赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.x2=21B.x(x﹣1)=21C.x2=21D.x(x﹣1)=2110.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.11.(3分)二次函数y=ax2+bx+c(c≠0)图象如图所示,现有下列结论:①b2﹣4ac>0;②2a+b=0;③a﹣b+c>0;④b+c>0;⑤4a+2b+c<0,则其中结论正确的是()A.①③⑤B.①②④C.②③⑤D.①②④⑤12.(3分)如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125°B.130°C.135°D.140°13.(3分)抛物线y=﹣x2+2x+6在直线y=﹣2上截得的线段长度为()A.2B.3C.4D.614.(3分)小颖在抛物线y=2x2+4x+5上找到三点(﹣1,y1),(2,y2),(﹣3,y3),则你认为y1,y2,y3的大小关系应为()A.y1<y3<y2B.y2<y1<y3C.y3<y2<y1D.y1<y2<y315.(3分)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()[来源:]//A.B.C.D.16.(3分)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.(3分)已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.18.(3分)二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为.19.(3分)如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.20.(3分)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s//的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为cm2.三、解答题(共6小题,满分66分)21.(10分)解方程:(1)x2﹣4x﹣1=0(2)x2﹣3x=(2﹣x)(x﹣3)22.(9分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.23.(9分)如图,二次函数图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式及顶点坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.//24.(12分)某农户准备围建一个矩形苗圃园,其中一边靠墙,另外三边用30米长的篱笆围成,已知墙长为18米,设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若垂直于墙的一边为多少米时,苗圃园的面积最大值?最大面积是多少?(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.25.(13分)在矩形ABCD中,AB=1,BC=2,对角线AC、BD相交于点O,点A绕点O按顺时针方向旋转到A′,旋转角为α(0°<α<∠AOD),连接A′C.(1)如图①,则△AA′C的形状是;(2)如图②,当∠α=60°,求A′C长度;(3)如图③,当∠α=∠AOB时,求证:A′D∥AC.26.(13分)如图①,已知抛物线y=﹣x2﹣2x+3与x轴交于点A和点B,与y轴交于点C.(1)直接写出A,B,C三点的坐标:A;B;C;(2)在该抛物线的对称轴上是否存在点P,时△APC的周长最小,若存在,求出点P的坐标,若不存在,请说明理由.(3)如图②,若点E为第二象限抛物线上的一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.////2019-2020学年河北省唐山市丰南区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分42分)1.(2分)已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.【解答】解:∵一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴将x=0代入方程得:a2﹣1=0,解得:a=1或a=﹣1,将a=1代入方程得二次项系数为0,不合题意,舍去,则a的值为﹣1.故选:B.2.(2分)将抛物线y=4x2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A.y=4(x+1)2+3B.y=4(x+1)2﹣3C.y=4(x﹣1)2+3D.y=4(x﹣1)2﹣3【解答】解:∵将y=4x2向右平移1个单位,再向上平移3个单位,∴平移后的抛物线的解析式为:y=4(x﹣1)2+3.故选:C.3.(2分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选:D.4.(2分)一元二次方程5x2﹣2x=0,最适当的解法是()A.因式分解法B.配方法C.公式法D.直接开平方法【解答】解:∵5x2﹣2x=0,∴x(5x﹣2)=0,则x=0或5x﹣2=0,解得:x=0或x=0.4,//故选:A.5.(2分)二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有两个交点,∴,即,解得k<3且k≠0.故选:B.6.(2分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.7.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=4【解答】解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.//8.(3分)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.9.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.x2=21B.x(x﹣1)=21C.x2=21D.x(x﹣1)=21【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故选:B.10.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,//∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k<0,b=0,即kb=0,故D不正确;故选:B.11.(3分)二次函数y=ax2+bx+c(c≠0)图象如图所示,现有下列结论:①b2﹣4ac>0;②2a+b=0;③a﹣b+c>0;④b+c>0;⑤4a+2b+c<0,则其中结论正确的是()A.①③⑤B.①②④C.②③⑤D.①②④⑤【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①正确;∵抛物线对称轴为直线x=﹣=1,∴2a+b=0,所以②正确;根据图象知,当x=﹣1时,y<0,即a﹣b+c<0.选项③错误;由抛物线的开口向下,得到a<0,∵﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴b+c>0,所以④正确;∵对称轴为直线x=1,∴抛物线与x轴正半轴的交点坐标大于2,∴当x=2时,y>0,即4a+2b+c>0,所以⑤错误.所以正确的有①②④共个.故选:B.//12.(3分)如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125°B.130°C.135°D.140°【解答】解:如图,连接AA′.由题意得:AC=A′C,A′B′=AB,∠ACA′=90°,∴∠AA′C=45°,AA′2=22+22=8;∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∠A′=135°,故选:C.13.(3分)抛物线y=﹣x2+2x+6在直线y=﹣2上截得的线段长度为()A.2B.3C.4D.6【解答】解:由题意得:,解得:x=﹣2或x=4,故在直线y=﹣2上截得的线段
本文标题:2019-2020学年唐山市丰南区九年级上期中数学试卷(有答案)(已纠错)
链接地址:https://www.777doc.com/doc-1648969 .html