您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 1.3.1函数的单调性和最大小值
------函数的单调性一、引入课题观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:yx11-1yx1-11-1问:随x的增大,y的值有什么变化?x1-11y-1-1画出下列函数的图象,观察其变化规律:1.f(x)=x①从左至右图象上升还是下降______?②在区间____________上,随着x的增大,f(x)的值随着________.2.f(x)=-2x+1①从左至右图象上升还是下降______?②在区间____________上,随着x的增大,f(x)的值随着________.上升(-∞,+∞)增大下降(-∞,+∞)减小3.f(x)=x2①在区间____________上,f(x)的值随着x的增大而________.②在区间____________上,f(x)的值随着x的增大而________.x…-4-3-2-101234…f(x)…16941014916…(-∞,0]减小(0,+∞)增大y246810O-2x84121620246210141822I对区间I内x1,x2,当x1x2时,有f(x1)f(x2)图象在区间I逐渐上升?OxIy区间I内随着x的增大,y也增大x1x2f(x1)f(x2)MN对区间I内x1,x2,当x1x2时,有f(x1)f(x2)xx1x2?Iyf(x1)f(x2)OMN任意区间I内随着x的增大,y也增大图象在区间I逐渐上升对区间I内x1,x2,当x1x2时,有f(x1)f(x2)xx1x2都yf(x1)f(x2)O设函数y=f(x)的定义域为D,区间ID.如果对于区间I上的任意当x1x2时,都有f(x1)f(x2),定义MN任意两个自变量的值x1,x2,I称为f(x)的单调增区间.那么就说f(x)在区间I上是单调增函数,区间I内随着x的增大,y也增大图象在区间I逐渐上升I那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.Oxyx1x2f(x1)f(x2)类比单调增函数的研究方法定义单调减函数.xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为D,区间ID.如果对于属于定义域D内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为D,区间ID.如果对于属于定义域D内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增函数,I称为f(x)的单调区间.增当x1x2时,都有f(x1)f(x2),当x1x2时,都有f(x1)f(x2),单调区间注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间I内的任意两个自变量x1,x2;③函数的单调性是相对某个区间而言,不能直接说某函数是增函数或减函数。下列说法是否正确?请画图说明理由。(1)如果对于区间(0,+∞)上的任意x有f(x)f(0),则函数在区间(0,+∞)上单调递增。(2)对于区间(a,b)上得某3个自变量的值x1,x2,x3,当时,有则函数f(x)在区间(a,b)上单调递增。123()()()()()fafxfxfxfb123axxxb2.单调性与单调区间如果函数y=f(x)在某个区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:注意:⑴函数的单调区间是其定义域的子集;⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在那样的特定位置上,虽然使得,但显然此图象表示的函数不是一个单调函数;1x2x)(1xf)(2xf)(xf?5yx12()()fxfx⑶几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.思考1:一次函数的单调性,单调区间:)0(kbkxy思考2:二次函数的单调性,单调区间:)0(2acbxaxy(二)典型例题例1如图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数.)(xf图6yx-5-2135•书写单调区间时,注意区间端点的写法。对于某一个点而言,由于它的函数值是一个确定的常数,无单调性可言,因此在写单调区间时,可以包括端点,也可以不包括端点。但对于某些不在定义域内的区间端点,书写时就必须去掉端点。练习:判断函数的单调区间。2()2fxxxxxxxf2)(2y21o单调递增区间:单调递减区间:]1,(),1[例2物理学中的玻意定律(k为正常数)告诉我们,对于一定量的气体,当体积V减小时,压强P将增大.试用函数的单调性证明之.kpV=二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数(increasingfunction).3.证明函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:①任取x1,x2∈D,且x1x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断差f(x1)-f(x2)的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性).)上是增函数。,(在区间证明函数xxf12)(.例2内任意是区间设),(,x21x121212()()(21)(21)2(x)fxfxxxx0x,2121xxx0)()(21xfxf)()(21xfxf即证明:。两个实数,且x21x),(12)(在区间则函数xxf是增函数。(取值)(作差)(下结论)(定号).23)(.2上是增函数在证明函数练习Rxxf证明:f(x1)<f(x2)f(x1)-f(x2)<0f(x1)-f(x2)=(3x1+2)-(3x2+2)=3(x1-x2)由x1<x2,得x1-x2<0.23)(上是增函数在函数Rxxf设x1,x2是R上的任意两个实数,且x1<x2,则探究:P30画出反比例函数的图象.①这个函数的定义域是什么?②它在定义域I上的单调性怎样?证明你的结论.xy1思考3:反比例函数的单调性,单调区间:)0(kxky.),0(1)(.3减函数?证明你的结论上是增函数还是在函数例xxf证明:设x1,x2∈(0,+∞),且x1<x2,则22111)(,1)(xxfxxf212111)()(xxxfxf2112xxxx0),0(,2121xxxx01221xxxx0)()(21xfxf)()(21xfxf.),0(1)(上是减函数在函数xxf1-1-1Oxy1f(x)在定义域上是减函数吗?减函数取x1=-1,x2=1f(-1)=-1f(1)=1-1<1f(-1)<f(1)例3讨论函数在(-2,2)内的单调性.322axxf(x)变式1:若二次函数2()4fxxax在区间(-∞,1]上单调递增,求a的取值范围。变式2:若二次函数2()4fxxax的递增区间是(-∞,1],则a的取值情况是()fx是定义在R上的单调函数,且的图象过点A(0,2)和B(3,0)(1)解不等式(2)求适合的的取值范围()fx(2)(1)fxfx()2()0fxfx或x()fx是定义在(-1,1)上的单调增函数,解不等式(2)(1)fxfx的单调区间。求函数34xxy2练习:注意:在原函数定义域内讨论函数的单调性思考与讨论f(x)和g(x)都是区间D上的单调函数,那么f(x)和g(x)四则运算后在该区间D内还具备单调性吗?情况如何?你能证明吗?能举例吗?1.若f(x)为增函数,g(x)为增函数,则F(X)=f(x)+g(x)为增函数。2.若f(x)为减函数,g(x)为减函数,则F(X)=f(x)+g(x)为减函数。3.若f(x)为增函数,g(x)为减函数,则F(X)=f(x)-g(x)为增函数。4.若f(x)为减函数,g(x)为增函数,则F(X)=f(x)-g(x)为减函数。三、归纳小结1.函数的单调性的判定、证明和单调区间的确定:函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论2.直接利用初等函数的单调区间。四、作业布置书面作业:课本P39A组:第2题2(选做)证明函数f(x)=x3在(-∞,+∞)上是增函数.------函数的最大(小)值画出下列函数的草图,并根据图象解答下列问题:1.说出y=f(x)的单调区间,以及在各单调区间上的单调性;2.指出图象的最高点或最低点,你是如何理解函数图象最高点的?(1)(2)()23[0,3]fxxx12)(2xxxfxyo2oxy-11.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值最大值的几何意义:函数图像上最高点的纵坐标。类比最大值的定义,请你给出最小值的定义。2.最小值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值2.函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).注意:1.函数最大(小)值首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;3.最大值和最小值统称为最值。.)(1,1)(,),()(12的最大值为函数则都有任意、函数xfxfRxRxxxf判断以下说法是否正确。.)(,)(,)(,)(,,,),,(,)(3003020132100yxfyxfyxfyxfxxxyxPbaxf的最小值为则函数有自变量对于),已知点的定义域为(、函数2、设函数,则成立吗?的最大值是2吗?为什么?2()1fxx()2fx()fx例3“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果在距地面高度hm与时间ts之间的关系为:h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它的爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)解:作出函数h(t)=-4.9t2+14.7t+18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有:29)9.4(47.1418)9.4(45.1)9.4(27.142ht时,函数有最大值当于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29m.例3求函数在区间[2,6]上的最大值和最小值.12xy解:设x1,x2是区间[2,6]上的任意两个实数,且x1x2,则)1)(1()(2)1)(1()]1()1[(21212)()(121212122121xxxxxxxxxxxfxf由于2x1x26,得x2-x10,(x1-1)(x2-1)0,于是)()(,0)()(2121xfxfxfxf即所以,函数是区间[2,6]上的减函数.12xy因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.12xy12xy(二)判断函数的最大(小)值的方法1.利用二次函数的性质(配方法)求函数的最大(小)值2.利用图象
本文标题:1.3.1函数的单调性和最大小值
链接地址:https://www.777doc.com/doc-1656293 .html