您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 14.1.2幂的乘方课件(新人教版八年级上)(公开课)
15.1.2幂的乘方同底数幂的乘法:am·an=am+n(m、n为正整数)同底数幂相乘,底数不变,指数相加。am·an·ap=am+n+p(m、n、p为正整数)复习----想一想(2)①32×3m=②5m·5n=③x3·xn+1=④y·yn+2·yn+4=3m+25m+ny2n+7Xn+4(23)6(103)21、了解幂的乘方的运算法则。2、了解积的乘方的运算法则,并能灵活运用3种法则。3面积S=.32)3(33面积S=.2322)3(能不能快速说出是几个3相乘体积V=.2323你能说出各式的底和指数吗?探究根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2×a2×a2=a().(3)(am)3=am·am·am=a()(m是正整数).(3)观察:3)(mama3这几道题有什么共同的特点呢?计算的结果有什么规律吗?(1)32)3(63(2)32)3(63猜想:nma)(⑴⑵⑶(m是正整数)3、根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:663m活动3(4)mnmmmmmm+m+m++m+m(a)=aaaaa=a=…………amnn个相乘n个m相加(32)3=××=(3)()(a2)3=××=(a)()(am)3=××=(a)()323232a2a2a2amamamma(am)n=amn(m,n都是正整数).幂的乘方,底数,指数。不变相乘如(23)4=23×4=212(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.一般地,我们有am·an=am+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加.例2:计算:(1)(103)5;(2)(a4)4;(3)(am)2;(4)-(x4)3.解:(1)(103)5=103Χ5=1015(2)(a4)4=a4Χ4=a16;(3)(am)2=amΧ2=a2m(4)-(x4)3=-x4Χ3=-x12.-(x2)3八年级数学=-x2×3=-x6;(-x2)3=-x2×3=-x6;-(x3)2=-x3×2=-x6;(-x3)2=x2×3=x6;活动5探究1、【(32)3】42、【(a3)4】3解:1、【(32)3】4=(32×3)4=32×3×4=3242、【(a3)4】3=(a3×4)3=a3×4×3=a36则【(am)n】p=amnp变式1:计算(1)(xn)5(2)(24)3(3)[(xy)3]3m+1(4)[(x+y)3]2解:(1)(xn)5=x5n(2)(24)3=24×3=212(3)[(xy)3]3m+1=(xy)3·(3m+1)=(xy)9m+3(4)[(x+y)3]2=(x+y)3×2=(x+y)6公式中的底数a和指数n都可以变形为:单独的数字、字母、整式活动4幂的乘方法则(重点)例2:计算:(1)(x2)3;(3)(a3)2-(a2)3;(2)-(x9)8;(4)(a2)3·a5.思路导引:运用幂的乘方法则,运算时要先确定符号.解:(1)(x2)3=x2×3=x6.(2)-(x9)8=-x9×8=-x72.(3)(a3)2-(a2)3=a6-a6=0.(4)(a2)3·a5=a2×3·a5=a6+5=a11.下列各式对吗?请说出你的观点和理由:(1)(a4)3=a7()(2)a4a3=a12()(3)(a2)3+(a3)2=(a6)2()(4)(x3)2=x32=x9()××××活动3练一练1.(m2)3·m4等于()BA.m9B.m10C.m12D.m142.计算:(1)[(x+y)2]6=____________;(2)a8+(a2)4=____________.2a83.已知x2n=3,则(xn)4=________.9点拔:(xn)4=x4n=(x2n)2=32=9.(x+y)124.已知10a=5,10b=6,则102a+103b的值为________.241点拨:102a+103b=(10a)2+(10b)3=52+63=241.例3:已知ax=3,ay=2,试求a2x+3y【规律总结】对于幂的乘方与同底数幂的乘法的混合运算,先算乘方,再算同底数幂的乘法;幂的乘方与加减混合运算时,先乘方,后加减,注意合并同类项.的值.幂的乘方法则的逆用amn=(am)n=(an)m,即x6=(x2)3=(x3)2.解:a2x+3y=a2x·a3y=(ax)2·(ay)3=32·23=9×8=72.我是狄仁杰我来判!23()x32(-x)(×)(×)(×)我是狄仁杰我来判!(2)a6·a4=a24(1)(x3)3=x6元芳,你怎么看?运算种类公式法则中运算计算结果底数指数同底数幂乘法幂的乘方乘法乘方不变不变指数相加指数相乘mnnmaa)(nmnmaaa43])[((1)yx⑵(a-b)3[(a-b)3]2⑶[(x-y)2]2[(y-x)2]3小结:今天,我们学到了什么?幂的乘方的运算性质:(am)n=amn(m,n都是正整数).同底数幂乘法的运算性质:am·an=am+n(m,n都是正整数)底数,指数。不变相加底数,指数。不变相乘2.已知3×9n=37,求:n的值.1.已知53n=25,求:n的值.在255,344,433,522这四个幂中,数值最大的一个是———。解:255=25×11=(25)11=3211344=34×11=(34)11=8111433=43×11=(43)11=6411522=52×11=(52)11=2511所以数值最大的一个是______344深入探索----议一议2(1)已知2x+5y-3=0,求4x·32y的值(2)已知2x=a,2y=b,求22x+3y的值(3)已知22n+1+4n=48,求n的值(4)比较375,2100的大小(5)若(9n)2=38,则n为______练习计算:(1)(103)3;(2)(x3)2;(3)-(xm)5;(4)(a2)3∙a5;(5)0.254•82;(6)8•86•0.255;(7)[(m-n)2]3+(m-n)3(n-m)3.211.已知,44•83=2x,求x的值.
本文标题:14.1.2幂的乘方课件(新人教版八年级上)(公开课)
链接地址:https://www.777doc.com/doc-1674015 .html