您好,欢迎访问三七文档
等腰三角形的性质朱金杜2018年秋嗨,同学们请细心观察1、通过刚刚的欣赏,我们观察到了什么几何图形?2、那么这些三角形有什么样的共同特征?问题:有两条边相等的三角形叫做等腰三角形.ACB腰腰底边顶角底角底角如图:在△ABC中,AB=AC,D在AC上,且BD=BC=AD,请找出图中有哪几个等腰三角形?ACDBADBCDBACB火眼金睛!1、动手操作:把一张长方形纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?2、想一想:(1)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?(3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。ABCDABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?AC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABCD把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.等腰三角形是轴对称图形吗?※等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。ABCD找出其中重合的线段和角,填入下表:重合的线段重合的角等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?AB=ACBD=CDAD=AD∠B=∠C∠ADB=∠ADC∠BAD=∠CAD细心观察大胆猜想你发现了什么?结论1:等腰三角形的两底角相等ABC你发现了什么?结论1:等腰三角形的两底角相等ABC结论2:等腰三角形顶角的角平分线,既是底边上的中线,也是底边上的高。性质一:等腰三角形的两个底角相等。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?ABCD如何构造两个全等的三角形?ABC则有∠1=∠2D12在△ABD和△ACD中证明:作顶角的平分线AD,AB=AC∠1=∠2AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形对应角相等)ABC则有BD=CDD在△ABD和△ACD中证明:作△ABC的中线ADAB=ACBD=CDAD=AD(公共边)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)ABC则有∠ADB=∠ADC=90ºD在Rt△ABD和Rt△ACD中证明:作△ABC的高线ADAB=ACAD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C(全等三角形对应角相等)⒈等腰三角形一个底角为75°,它的另外两个角为_______;⒉等腰三角形一个角为70°,它的另外两个角为___________________;⒊等腰三角形一个角为110°,它的另外两个角为________。75°,30°70°,40°或55°,55°35°,35°小试牛刀性质2:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.在△ABC中(1)∵AB=AC,AD⊥BC,∴∠__=∠__,____=____;(2)∵AB=AC,AD是中线,∴∠_=∠_,____⊥____;(3)∵AB=AC,AD是角平分线,∴____⊥____,____=____.CAB12D用符号语言表示为:12BDCD12ADBCADBCBDCD1.根据等腰三角形性质2填空,在△ABC中,AB=AC,(1)∵AD⊥BC,∴∠_____=∠_____,____=____.(2)∵AD是中线,∴____⊥____,∠_____=∠_____.(3)∵AD是角平分线,∴____⊥____,_____=_____.ABCDBADCADCADBDCDADBCBDBADBCADCD知一线得二线“三线合一”可以帮助我们解决线段的垂直、相等以及角的相等问题。△ABC中,AB=AC,D是BC边上的中点,DF⊥AC于FDE⊥AB于E.求证:DE=DF。ABCDEF证明:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD又∵D是BC中点(已知)∴BD=CD∵AB=AC(已知)∴∠B=∠C(等边对等角)在△DBE与△DCF中∠DEB=∠DFC(已证)∠B=∠C(已证)BD=CD(已证)∴△BDE≌△CDF(AAS)∴DE=DF方法二:连AD。∵AB=AC,BD=DC(已知)∴AD是∠BAC的平分线。(等腰三角形三线合一)又∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到这个角的两边距离相等)应用:一题多解轴对称图形两个底角相等,简称“等边对等角”顶角平分线、底边上的中线、和底边上的高互相重合,简称“三线合一”下课了!
本文标题:等腰三角形讲优质课
链接地址:https://www.777doc.com/doc-1674520 .html