您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 指数函数(经典题、易错题)
指数函数(经典题、易错题)菁优网©2010-2013菁优网指数函数(经典题、易错题)一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.315.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)7.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0B.C.1D.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()菁优网©2010-2013菁优网A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d10.(2012•四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)12.函数y=3x﹣1的图象大致是()A.B.C.D.13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>117.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()菁优网©2010-2013菁优网A.(0,1)B.(1,1)C.(1,2)D.(0,2)19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a20.(2005•山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.4321.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.b>c>aB.c>a>bC.a>b>cD.b>a>c二.填空题(共2小题)23.函数的单调递增区间是_________.24.(2005•上海)方程4x+2x﹣2=0的解是_________.菁优网©2010-2013菁优网指数函数(经典题、易错题)参考答案与试题解析一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:结合指数函数数在[0,1]上的单调性可求.解答:解:∵0≤x≤1且函数单调递减∴故选D点评:本题主要考查了指数函数的单调性的应用,属于基础试题.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2+2x﹣1=(x+1)2﹣2≥﹣2∴y=≤=4∴0<y≤4故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:画出f(x)的图象,由f(x)图象f(x)可得的值域.菁优网©2010-2013菁优网解答:解:函数的图象如图:由f(x)的图象可得:f(x)的值域为(0,+∞).故选B.点评:本题考查指数函数的值域,用到了指数函数的图象.4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.31考点:指数函数的定义、解析式、定义域和值域;函数的最值及其几何意义.1091931专题:计算题.分析:由x∈[1,2],知2≤2x≤4,把y=4x+2x+1+5转化为y=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.解答:解:∵x∈[1,2],∴2≤2x≤4,∴y=4x+2x+1+5=(2x)2+2×2x+5=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.故选C.点评:本题考查指数函数的性质和应用,解题时要认真审题,注意配方法的合理运用.5.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:设t=|x|可得出t∈[0,2],根据指数函数的单调性求出值域即可.解答:解:设t=|x|∵函数y=3|x|﹣1的定义域为[﹣1,2],∴t∈[0,2]∴y=3t﹣1∴y=3t﹣1在t∈[0,2]的值域为[0,8]故选B.点评:本题考查了指数函数的定义域和值域,求出函数y=3t﹣1的定义域是解题的关键,属于基础题.6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)菁优网©2010-2013菁优网考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2≥0∴y=≤=1∴0<y≤1故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.7.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0B.C.1D.考点:指数函数的图像与性质.1091931专题:计算题.分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d考点:指数函数的图像与性质.1091931专题:综合题.分析:通过作直线x=1与图象交于四点,利用这几个点的位置关系,从而确定a,b,c,d的大小关系.解答:解:∵a1=a,∴作直线x=1与图象分别交于A,B,C,D点,则它们纵坐标分别为:a,b,c,d由图a>b>c>d菁优网©2010-2013菁优网故选A.点评:本题考查了指数函数的图象与性质,同时考查了数形结合的思想方法,是个基础题.9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d考点:指数函数的图像与性质.1091931专题:数形结合.分析:要比较a、b、c、d的大小,根据函数结构的特征,作直线x=1,与y=ax,y=bx,y=cx,y=dx交点的纵坐标就是a、b、c、d,观察图形即可得到结论.解答:解:作辅助直线x=1,当x=1时,y=ax,y=bx,y=cx,y=dx的函数值正好是底数a、b、c、d直线x=1与y=ax,y=bx,y=cx,y=dx交点的纵坐标就是a、b、c、d观察图形即可判定大小:b<a<d<c故选:C.点评:本题主要考查了指数函数的图象与性质,同时考查了数形结合的数学思想,分析问题解决问题的能力,属于基础题.10.(2012•四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.菁优网©2010-2013菁优网考点:指数函数的图像变换.1091931专题:计算题.分析:a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,由此得出结论.解答:解:函数y=ax﹣a(a>0,a≠1)的图象可以看成把函数y=ax的图象向下平移a个单位得到的.当a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,故选C.点评:本题主要考查指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)考点:指数函数的图像变换.1091931专题:计算题.分析:我们可以用待定系数法解答本题,先设出平移向量的坐标,根据函数图象的平移法则,我们可以求出平移后函数的解析式,根据已知我们可构造出一个关于h,k的二元一次方程组,解方程组即可求出平移向量的坐标.解答:解:设平移向量=(h,k)则函数y=2x﹣2+3的图象平移后得到的函数解析式为:y=2x﹣h﹣2+3+k即x﹣h﹣2=x+1且3+k=﹣1解得h=﹣3,k=﹣4故向量=(﹣3,﹣4)故选A点评:本题考查的知识点是函数图象的平移变换,其中根据平移法则“左加右减,上加下减”构造关于h,k的二元一次方程组,是解答本题的关键.12.函数y=3x﹣1的图象大致是()A.B.C.D.考点:指数函数的图像变换.1091931专题:作图题.分析:可利用排除法解此选择题,由特殊点(0,0)在函数图象上可排除A、B;由特殊性质函数的值域为(﹣1,+∞),排除C,即可得正确选项解答:解:由函数y=3x﹣1的图象过(0,0)点,排除A、B,由函数y=3x﹣1的值域为(﹣1,+∞),排除C菁优网©2010-2013菁优网故选D点评:本题考查了指数函数的图象变换,排除法解选择题13.函数f(x)=4x+5
本文标题:指数函数(经典题、易错题)
链接地址:https://www.777doc.com/doc-1681894 .html