您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 五年级奥数:周期问题
八周期性问题(A)年级班姓名得分一、填空题1.某年的二月份有五个星期日,这年六月一日是星期_____.2.1989年12月5日是星期二,那么再过十年的12月5日是星期_____.3.按下面摆法摆80个三角形,有_____个白色的.……4.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.5.时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.6.把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.第一列第二列第三列第四列第五列123459876101112131418171615………………………7.把分数74化成小数后,小数点第110位上的数字是_____.8.循环小数7992511.0与74563.0.这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.9.一串数:1,9,9,1,4,1,4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.10.50777...7个所得积末位数是_____.二、解答题11.紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如89=72,在9后面写2,92=18,在2后面写8,……得到一串数字:1989286……这串数字从1开始往右数,第1989个数字是什么?12.1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?13.设222...2n1991个,那么n的末两位数字是多少?14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?八周期性问题(B)年级班姓名得分一、填空题1.1992年1月18日是星期六,再过十年的1月18日是星期_____.2.黑珠、白珠共102颗,穿成一串,排列如下图:……这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.3.流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,……继续下去第1993个小珠的颜色是_____色.4.把珠子一个一个地如下图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在_____袋中.5.将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_____行第_____列.1471013282522191631343740435855524946………………………………………………………………6.分数139化成小数后,小数点后面第1993位上的数字是_____.7.143化成小数后,小数点后面1993位上的数字是_____.8.在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.9.1991个9与1990个8与1989个7的连乘积的个位数是_____.10.算式(367367+762762)123123的得数的尾数是_____.123456789101112131415161718……13.二、解答题11.乘积1234……19901991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?12.有串自然数,已知第一个数与第二个数互质,而且第一个数的65恰好是第二个数的41,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?共产党好共产党好共产党好……社会主义好社会主义好社会主义好……上表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_____.14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_____厘米.———————————————答案——————————————————————1.二因为74=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了31+30+31+1=93(天).因为937=13…2,所以这年6月1日是星期二.2.日依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有36510+2=3652(天)因为(3652+1)7=521…6,所以再过十年的12月5日是星期日.[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.3.39从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为806=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形133=39(个).4.白依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由734=18…1,可知第73盏灯是白灯.5.13时.分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,199124=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.6.3仔细观察题中数表.12345(奇数排)第一组9876(偶数排)1011121314(奇数排)第二组18171615(偶数排)1920212223(奇数排)第三组27262524(偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)109=1…1,10在1+1组,第1列199=2…1,19在2+1组,第1列因为19929=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.7.774=0.57142857……它的循环周期是6,具体地六个数依次是5,7,1,4,2,81106=18…2因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8.35因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9.853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为19917=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3284+1=853(个),9的个数是2284+2=570(个),4的个数是2284=568(个).这些数字的总和为1853+9570+4568=8255.10.9先找出积的末位数的变化规律:71末位数为7,72末位数为9,73末位数为3,74末位数1;75=74+1末位数为7,76=74+2末位数为9,77=74+3末位数为3,78=247末位数为1……由此可见,积的末位依次为7,9,3,1,7,9,3,1……,以4为周期循环出现.因为504=12…2,即750=21247,所以750与72末位数相同,也就是积的末位数是9.11.依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)6=330…5,所以所求数字是8.12.1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为199010=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.13.n是1991个2的连乘积,可记为n=21991,首先从2的较低次幂入手寻找规律,列表如下:nn的十位数字n的个位数字nn的十位数字n的个位数字210221296220421392230821484241621568....25322163626642177227282184428562198829122207621024221522114822204观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为199020=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n的末两位数字是48.14.因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,55-64=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2[(100-10)30]+1=23+1=7(段)[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.———————————————答案——————————————————————1.五在这十年中有3个闰年,所以这10年的总天数是36510+3,365被7除余1,所以总天数被7除的余数是(13-7=)6,因此10年后的1月18日是星期五.2.黑,26根据图示可知,若去掉第一颗白珠后它们的排列是按“一黑三色”交替循环出现的,也就是这一排列的周期为4.由(102-1)4=25…1,可知循环25个周期,最后一颗珠子是黑色的.黑色珠子共有125+1=26(颗).3.黑小木球是依次按5红,4黄,3绿,2黑和1白的规律涂色的,把它看成周期性问题,每个周期为15.由199315=132…13知,第1993个小球是第133周期中的第13个,按规律涂色应该是黑色,所以第1993个小球的颜色是黑色.4.B通过观察可以发现,第11次到第20次投进的袋子依次与第1次到第10次投进的袋子相同,即当投的次数被10除余1,2,3,…,8,9,0,分别投进A,B,C,……D,C,B袋中,1992......6121824305101520259596100.90被10除
本文标题:五年级奥数:周期问题
链接地址:https://www.777doc.com/doc-1725782 .html