您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 用FFT对信号作频谱分析
用FFT对信号作频谱分析1.实验目的学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。2.实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/2,因此要求DN/2。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。3.实验步骤及内容(1)对以下序列进行谱分析。其它nnnnnnx其它nnnnnnxnRnx,074,330,4)(,074,830,1)()()(3241选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(2)对以下周期序列进行谱分析。4()cos4xnn5()cos(/4)cos(/8)xnnn选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(3)对模拟周期信号进行谱分析6()cos8cos16cos20xtttt选择采样频率HzFs64,变换区间N=16,32,64三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。4.思考题(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2nx和)(3nx的幅频特性会相同吗?为什么?N=16呢?5.实验报告要求(1)完成各个实验任务和要求。附上程序清单和有关曲线。(2)简要回答思考题。10.3.2实验程序清单定义子程序:functionmstem(Xk)M=length(Xk);k=0:M-1;wk=2*k/M;stem(wk,abs(Xk),'.');boxonxlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(Xk))])程序:x1n=[ones(1,4)];M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);subplot(2,1,1);mstem(X1k8);title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k8))])subplot(2,1,2);mstem(X1k16);title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])figure(2)subplot(2,1,1);mstem(X2k8);title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(2,1,2);mstem(X2k16);title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])figure(3)subplot(2,1,1);mstem(X3k8);title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k8))])subplot(2,1,2);mstem(X3k16);title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k16))])(2)N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X5k8=fft(x5n);N=16;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);X5k16=fft(x5n);figure(3)subplot(2,2,1);mstem(X4k8);title('(4a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k8))])subplot(2,2,3);mstem(X4k16);title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k16))])subplot(2,2,2);mstem(X5k8);title('(5a)8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k8))])subplot(2,2,4);mstem(X5k16);title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k16))])(3)figure(4)Fs=64;T=1/Fs;N=16;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k16=fft(x6nT);X6k16=fftshift(X6k16);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,1);stem(fk,abs(X6k16),'.');boxontitle('(6a)16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k32=fft(x6nT);X6k32=fftshift(X6k32);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,2);stem(fk,abs(X6k32),'.');boxontitle('(6b)32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k64=fft(x6nT);X6k64=fftshift(X6k64);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,3);stem(fk,abs(X6k64),'.');boxontitle('(6a)64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])4.思考题(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2nx和)(3nx的幅频特性会相同吗?为什么?N=16呢?答:(2)频谱分辨率直接D和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/2,因此要求DN/2。可以根据此式选择FFT的变换区间N。(3)当N=8时,)(2nx和)(3nx的幅频特性会相同.当N=16时,)(2nx和)(3nx的幅频特性会不相同。
本文标题:用FFT对信号作频谱分析
链接地址:https://www.777doc.com/doc-1730763 .html