您好,欢迎访问三七文档
人教版九年级上册1、我们所学的圆是不是轴对称图形呢?圆是轴对称图形,经过圆心的每一条直线都是它们的对称轴.2、我们所学的圆是不是中心对称图形呢?圆是中心对称图形,圆心是对称中心3、填空:(1)根据圆的定义,“圆”指的是“”,是线,而不是“圆面”。(2)圆心和半径是确定一个圆的两个必需条件,圆心决定圆的,半径决定圆的,二者缺一不可。(3)同一个圆的半径相等。圆周位置大小曲处处问题:你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?赵州桥主桥拱的半径是多少?由此你能得到圆的什么特性?可以发现:圆是轴对称图形。任何一条直径所在直线都是它的对称轴.不借助任何工具,你能找到圆形纸片的圆心吗?如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有那些相等的线段和弧?为什么?·OABCDE线段:AE=BE弧:AC=BC,AD=BD⌒⌒⌒⌒垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧CD⊥AB∵CD是直径,∴AE=BE,⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE•老师提示:•垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。∴CD⊥AB,∵CD是直径,AE=BE⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE(2)“不是直径”这个条件能去掉吗?如果不能,请举出反例。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。·OABCDEDCOAB下列图形是否具备垂径定理的条件?ECOABDOABc是不是是不是OEDCABEDCOABOBCADDOBCAOBAC垂径定理的几个基本图形:CD过圆心CD⊥AB于EAE=BEAC=BCAD=BD你能利用垂径定理解决求赵州桥拱半径的问题吗?37.4m7.2mABOCD关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦构成直角三角形,便将问题转化为直角三角形的问题。ABOCD解:如图,用AB表示主桥拱,设AB所在的圆的圆心为O,半径为r.经过圆心O作弦AB的垂线OC垂足为D,与AB交于点C,则D是AB的中点,C是AB的中点,CD就是拱高.∴AB=37.4m,CD=7.2m∴AD=1/2AB=18.7m,OD=OC-CD=r-7.2∵222ADODOA∴2222.77.18rr解得r=27.9(m)即主桥拱半径约为27.9m.⌒⌒1、如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A、∠COE=∠DOEB、CE=DEC、OE=AED、BD=BC⌒⌒·OABECD2、如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm。·OABE解:连接OA,∵OE⊥AB∴cmOEOAAE86102222∴AB=2AE=16cm3、如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。·OABE解:过点O作OE⊥AB于E,连接OA∴cmOEcmABAE3421∴cmOEAEAE5342222即⊙O的半径为5cm.4、如图,CD是⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,求直径CD的长。·OABECD解:连接OA,∵CD是直径,OE⊥AB∴AE=1/2AB=5设OA=x,则OE=x-1,由勾股定理得x2=52+(x-1)2解得:x=13∴OA=13∴CD=2OA=26即直径CD的长为26.
本文标题:垂直于弦的直径课件
链接地址:https://www.777doc.com/doc-1745455 .html