您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 数列通项公式方法大全很经典
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1已知数列{}na满足1232nnnaa,12a,求数列{}na的通项公式。解:1232nnnaa两边除以12n,得113222nnnnaa,则113222nnnnaa,故数列{}2nna是以1222a11为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22nnan,所以数列{}na的通项公式为31()222nnan。评注:本题解题的关键是把递推关系式1232nnnaa转化为113222nnnnaa,说明数列{}2nna是等差数列,再直接利用等差数列的通项公式求出31(1)22nnan,进而求出数列{}na的通项公式。(2)累加法例2已知数列{}na满足11211nnaana,,求数列{}na的通项公式。解:由121nnaan得121nnaan则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1nnnnnaaaaaaaaaannnnnnnnnnn所以数列{}na的通项公式为2nan。评注:本题解题的关键是把递推关系式121nnaan转化为121nnaan,进而求出11232211()()()()nnnnaaaaaaaaa,即得数列{}na的通项公式。变式:已知数列{}na满足112313nnnaaa,,求数列{}na的通项公式。(3)累乘法例3已知数列{}na满足112(1)53nnnanaa,,求数列{}na的通项公式。解:因为112(1)53nnnanaa,,所以0na,则12(1)5nnnana,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!nnnnnnnnnnnnnaaaaaaaaaannnnn所以数列{}na的通项公式为(1)12325!.nnnnan评注:本题解题的关键是把递推关系12(1)5nnnana转化为12(1)5nnnana,进而求出13211221nnnnaaaaaaaaa,即得数列{}na的通项公式。变式:已知数列{}na满足11231123(1)(2)nnaaaaanan,,求{}na的通项公式。(4)待定系数法例4已知数列{}na满足112356nnnaaa,,求数列na的通项公式。解:设1152(5)nnnnaxax④将1235nnnaa代入④式,得12355225nnnnnaxax,等式两边消去2na,得135525nnnxx,两边除以5n,得352,1,xxx则代入④式得1152(5)nnnnaa⑤由1156510a及⑤式得50nna,则11525nnnnaa,则数列{5}nna是以1151a为首项,以2为公比的等比数列,则152nnna,故125nnna。评注:本题解题的关键是把递推关系式1235nnnaa转化为1152(5)nnnnaa,从而可知数列{5}nna是等比数列,进而求出数列{5}nna的通项公式,最后再求出数列{}na的通项公式。变式:①已知数列{}na满足1135241nnnaaa,,求数列{}na的通项公式。②已知数列{}na满足21123451nnaanna,,求数列{}na的通项公式。(5)对数变换法例5已知数列{}na满足5123nnnaa,17a,求数列{}na的通项公式。解:因为511237nnnaaa,,所以100nnaa,。在5123nnnaa式两边取常用对数得1lg5lglg3lg2nnaan⑩设1lg(1)5(lg)nnaxnyaxny○11将⑩式代入○11式,得5lglg3lg2(1)5(lg)nnanxnyaxny,两边消去5lgna并整理,得(lg3)lg255xnxyxny,则lg35lg25xxxyy,故lg34lg3lg2164xy代入○11式,得1lg3lg3lg2lg3lg3lg2lg(1)5(lg)41644164nnanan○12由1lg3lg3lg2lg3lg3lg2lg1lg71041644164a及○12式,得lg3lg3lg2lg04164nan,则1lg3lg3lg2lg(1)41645lg3lg3lg2lg4164nnanan,所以数列lg3lg3lg2{lg}4164nan是以lg3lg3lg2lg74164为首项,以5为公比的等比数列,则1lg3lg3lg2lg3lg3lg2lg(lg7)541644164nnan,因此1111111116164444111111161644441111111616444455514lg3lg3lg2lg3lg3lg2lg(lg7)54164464(lg7lg3lg3lg2)5lg3lg3lg2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733nnnnnnnnnnnnan1115116454151511642)lg(732)nnnnn则11541515164732nnnnna。评注:本题解题的关键是通过对数变换把递推关系式5123nnnaa转化为1lg3lg3lg2lg3lg3lg2lg(1)5(lg)41644164nnanan,从而可知数列lg3lg3lg2{lg}4164nan是等比数列,进而求出数列lg3lg3lg2{lg}4164nan的通项公式,最后再求出数列{}na的通项公式。(6)数学归纳法例6已知数列{}na满足11228(1)8(21)(23)9nnnaaann,,求数列{}na的通项公式。解:由1228(1)(21)(23)nnnaann及189a,得2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181aaaaaa由此可猜测22(21)1(21)nnan,往下用数学归纳法证明这个结论。(1)当1n时,212(211)18(211)9a,所以等式成立。(2)假设当nk时等式成立,即22(21)1(21)kkak,则当1nk时,1228(1)(21)(23)kkkaakk222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]kkkkkkkkkkkkkkkkkkkkkkkkk2由此可知,当1nk时等式也成立。根据(1),(2)可知,等式对任何*nN都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。(7)换元法例7已知数列{}na满足111(14124)116nnnaaaa,,求数列{}na的通项公式。解:令124nnba,则21(1)24nnab故2111(1)24nnab,代入11(14124)16nnnaaa得221111(1)[14(1)]241624nnnbbb即2214(3)nnbb因为1240nnba,故111240nnba则123nnbb,即11322nnbb,可化为113(3)2nnbb,所以{3}nb是以1131243124132ba为首项,以21为公比的等比数列,因此121132()()22nnnb,则21()32nnb,即21124()32nna,得2111()()3423nnna。评注:本题解题的关键是通过将124na的换元为nb,使得所给递推关系式转化11322nnbb形式,从而可知数列{3}nb为等比数列,进而求出数列{3}nb的通项公式,最后再求出数列{}na的通项公式。(8)不动点法例8已知数列{}na满足112124441nnnaaaa,,求数列{}na的通项公式。解:令212441xxx,得2420240xx,则1223xx,是函数2124()41xfxx的两个不动点。因为112124224121242(41)13262132124321243(41)92793341nnnnnnnnnnnnnnaaaaaaaaaaaaaa。所以数列23nnaa是以112422343aa为首项,以913为公比的等比数列,故12132()39nnnaa,则113132()19nna。评注:本题解题的关键是先求出函数2124()41xfxx的不动点,即方程212441xxx的两个根1223xx,,进而可推出112213393nnnnaaaa,从而可知数列23nnaa为等比数列,再求出数列23nnaa的通项公式,最后求出数列{}na的通项公式。例9已知数列{}na满足1172223nnnaaaa,,求数列{}na的通项公式。解:令7223xxx,得22420xx,则1x是函数31()47xfxx的不动点。因为17255112323nnnnnaaaaa,所以2111()()3423nnna。评注:本题解题的关键是通过将124na的换元为nb,使得所给递推关系式转化11322nnbb形式,从而可知数列{3}nb为等比数列,进而求出数列{3}nb的通项公式,最后再求出数列{}na的通项公式。课后习题:1.数列252211,,,,的一个通项公式是()A、33nanB、31nanC、31nanD、33nan2.已知等差数列na的通项公式为32nan,则它的公差为()A、2B、3C、2D、33.在等比数列}{na中,,8,1641aa则7a()A、4B、4C、2D、24.若等比数列na的前项和为nS,且1010S,3020S,则30S5.已知数列na通项公式3102nnan,则该数列的最小的一个数是6.在数列{an}中,112a且11nnnnaanNna,则数列1na的前99项和等于.7.已知}{na是等差数列,其中131a,公差8d。(1)求数列}{na的通项公式;
本文标题:数列通项公式方法大全很经典
链接地址:https://www.777doc.com/doc-1764203 .html