您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 圆锥曲线的弦长公式及其推导过程
弦长公式二、证明弦长==其中为直线斜率,(,),(,)为直线与曲线的两交点证明方法如下:假设直线为:圆的方程为:,假设相交弦为AB,点A为(,)点B为(,)则有把,分别代入,则有:证明的方法也是一样的证明方法二这是两点间距离公式因为直线所以将其代入得到弦长公式二=2px,过焦点直线交抛物抛物线线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚公式三编辑d====..........................................................1式关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。d=......................................................................................2式在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个一元二次方程,其中△为一元二次方程中的b^2-4ac,a为二次项系数。补遗:公式2符合椭圆等圆锥曲线不光是圆。2式可以由1推出,很简单,由韦达定理,x1+x2=-b/a,x1x2=c/a代入再通分即可。在知道圆和直线方程求弦长时也可以用勾股定理(点到直线距离、半径、半弦)关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。.椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)结论:椭圆过焦点弦长公式:二.双曲线的焦点弦长设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。。解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得,整理可得,则因此焦点在x轴的焦点弦长为同理可得焦点在y轴上的焦点弦长公式三其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。.抛物线的焦点弦长若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|?(图4)解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。一。
本文标题:圆锥曲线的弦长公式及其推导过程
链接地址:https://www.777doc.com/doc-1772919 .html