您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 椭圆大题题型汇总例题+练习
椭圆大题题型解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等运用的知识:1、中点坐标公式:1212,y22xxyyx,其中,xy是点1122(,)(,)AxyBxy,的中点坐标。2、弦长公式:若点1122(,)(,)AxyBxy,在直线(0)ykxbk上,则1122ykxbykxb,,这是同点纵横坐标变换,是两大坐标变换技巧之一,2222221212121212()()()()(1)()ABxxyyxxkxkxkxx221212(1)[()4]kxxxx或者2222212121212122111()()()()(1)()ABxxyyxxyyyykkk2121221(1)[()4]yyyyk。3、两条直线111222:,:lykxblykxb垂直:则121kk两条直线垂直,则直线所在的向量120vv4、韦达定理:若一元二次方程20(0)axbxca有两个不同的根12,xx,则1212,bcxxxxaa。常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。例题1、过点T(-1,0)作直线l与曲线N:2yx交于A、B两点,在x轴上是否存在一点E(0x,0),使得ABE是等边三角形,若存在,求出0x;若不存在,请说明理由。例题2、已知椭圆1222yx的左焦点为F,O为坐标原点。(Ⅰ)求过点O、F,并且与2x相切的圆的方程;(Ⅱ)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围。练习1:已知椭圆)0(1:2222babyaxC过点)23,1(,且离心率21e。(Ⅰ)求椭圆方程;(Ⅱ)若直线)0(:kmkxyl与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点)0,81(G,求k的取值范围。练习2、设1F、2F分别是椭圆22154xy的左右焦点.是否存在过点(5,0)A的直线l与椭圆交于不同的两点C、D,使得22FCFD?若存在,求直线l的方程;若不存在,请说明理由.题型三:动弦过定点的问题例题3、已知椭圆C:22221(0)xyabab的离心率为32,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线:(2)lxtt与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论。例题4、已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线mkxyl:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。练习:直线mkxyl:和抛物线22ypx相交于A、B,以AB为直径的圆过抛物线的顶点,证明:直线mkxyl:过定点,并求定点的坐标。题型四:过已知曲线上定点的弦的问题若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。例题6、已知点A、B、C是椭圆E:22221xyab(0)ab上的三点,其中点A(23,0)是椭圆的右顶点,直线BC过椭圆的中心O,且0ACBC,2BCAC,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线3x对称,求直线PQ的斜率。练习:已知,椭圆C以过点A(1,32),两个焦点为(-1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。题型五:共线向量问题解析几何中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过未达定理------同类坐标变换,将问题解决。例题7、设过点D(0,3)的直线交曲线M:22194xy于P、Q两点,且DPDQl=uuuruuur,求实数l的取值范围。例题8:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线241xy的焦点,离心率为552.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若AFMA1,BFMB2,求21的值.练习:设椭圆)0(12:222ayaxC的左、右焦点分别为1F、2F,A是椭圆C上的一点,且0212FFAF,坐标原点O到直线1AF的距离为||311OF.(1)求椭圆C的方程;(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点)0,1(P,较y轴于点M,若QPMQ2,求直线l的方程.题型六:面积问题例题9、已知椭圆C:12222byax(a>b>0)的离心率为,36短轴一个端点到右焦点的距离为3。(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为23,求△AOB面积的最大值。练习、如图,直线ykxb与椭圆2214xy交于A、B两点,记ABC的面积为S。(Ⅰ)求在0k,01b的条件下,S的最大值;(Ⅱ)当12,SAB时,求直线AB的方程。练习1、已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4。(Ⅰ)求椭圆的方程;(Ⅱ)直线l过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。练习2、已知中心在原点,焦点在x轴上的椭圆的离心率为22,21,FF为其焦点,一直线过点1F与椭圆相交于BA,两点,且ABF2的最大面积为2,求椭圆的方程。题型七:弦或弦长为定值问题例题10设椭圆E:22221xyab(a,b0)过M(2,2),N(6,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
本文标题:椭圆大题题型汇总例题+练习
链接地址:https://www.777doc.com/doc-1786287 .html