您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 圆知识梳理题型归纳总结附答案-详细知识点归纳总结中考真题
..圆【知识点梳理】一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内dr点C在圆内;2、点在圆上dr点B在圆上;3、点在圆外dr点A在圆外;三、直线与圆的位置关系1、直线与圆相离dr无交点;2、直线与圆相切dr有一个交点;3、直线与圆相交dr有两个交点;rdd=rdrrddCBAO..四、圆与圆的位置关系外离(图1)无交点dRr;外切(图2)有一个交点dRr;相交(图3)有两个交点RrdRr;内切(图4)有一个交点dRr;内含(图5)无交点dRr;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。图3rRd图1rRd图2rRd图4rRd图5rRdOEDCBA..推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOBDOE;②ABDE;③OCOF;④弧BA弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵AOB和ACB是弧AB所对的圆心角和圆周角∴2AOBACB2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵C、D都是所对的圆周角∴CD推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙O中,∵AB是直径或∵90COCDABFEDCBAOCBAODCBAOCBAO..∴90C∴AB是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△ABC中,∵OCOAOB∴△ABC是直角三角形或90C注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边形ABCD是内接四边形∴180CBAD180BDDAEC九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。CBAOEDCBANMAO..十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PAPBPO平分BPA十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙O中,∵直径ABCD,∴2CEAEBE(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙O中,∵PA是切线,PB是割线∴2PAPCPB(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在⊙O中,∵PB、PE是割线∴PCPBPDPEPBAOPODCBAOEDCBADECBPAO..十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:12OO垂直平分AB。即:∵⊙1O、⊙2O相交于A、B两点∴12OO垂直平分AB十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:12RtOOC中,22221122ABCOOOCO;(2)外公切线长:2CO是半径之差;内公切线长:2CO是半径之和。十四、圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在RtBOD中进行:::1:3:2ODBDOB;(2)正四边形同理,四边形的有关计算在RtOAE中进行,::1:1:2OEAEOA:(3)正六边形同理,六边形的有关计算在RtOAB中进行,::1:3:2ABOBOA.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180nRl;BAO1O2CO2O1BADCBAOECBADOBAOSlBAO..(2)扇形面积公式:213602nRSlRn:圆心角R:扇形多对应的圆的半径l:扇形弧长S:扇形面积2、圆柱:(1)圆柱侧面展开图2SSS侧表底=222rhr(2)圆柱的体积:2Vrh(2)圆锥侧面展开图(1)SSS侧表底=2Rrr(2)圆锥的体积:213Vrh【考题集锦】一、选择题1.(北京市西城区)如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=3,PB=1,那么∠APC等于()(A)15(B)30(C)45(D)602.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的41,那么这个圆柱的侧面积是()(A)100π平方厘米(B)200π平方厘米(C)500π平方厘米(D)200平方厘米3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在母线长底面圆周长C1D1DCBAB1RrCBAO..的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=寸,求直径CD的长”.依题意,CD长为()(A)225寸(B)13寸(C)25寸(D)26寸4.(北京市朝阳区)已知:如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于()(A)6(B)25(C)210(D)2145.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()(A)2厘米(B)22厘米(C)4厘米(D)8厘米6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()(A)7厘米(B)16厘米(C)21厘米(D)27厘米7.(重庆市)如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于()(A)54(B)45(C)43(D)658.(重庆市)一居民小区有一正多边形的活动场.为迎接“AAPP”会议在重庆市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金()(A)2400元(B)2800元(C)3200元(D)3600元9.(河北省)如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、..B两点到直线CD的距离之和为()(A)12厘米(B)10厘米(C)8厘米(D)6厘米10.(河北省)某工件形状如图所示,圆弧BC的度数为60,AB=6厘米,点B到点C的距离等于AB,∠BAC=30,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π11.(沈阳市)如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于()(A)3(B)4(C)6(D)812.(哈尔滨市)已知⊙O的半径为35厘米,⊙O的半径为5厘米.⊙O与⊙O相交于点D、E.若两圆的公共弦DE的长是6厘米(圆心O、O在公共弦DE的两侧),则两圆的圆心距OO的长为()(A)2厘米(B)10厘米(C)2厘米或10厘米(D)4厘米13.(陕西省)如图,两个等圆⊙O和⊙O的两条切线OA、OB,A、B是切点,则∠AOB等于()(A)30(B)45(C)60(D)9014.(甘肃省)如图,AB是⊙O的直径,∠C=30,则∠ABD=()(A)30(B)40(C)50(D)6015.(甘肃省)弧长为6π的弧所对的圆心角为60,则弧所在的圆的半径为()(A)6(B)62(C)12(D)1816.(甘肃省)如图,在△ABC中,∠BAC=90,AB=AC=2,以AB为直径的圆交BC于..D,则图中阴影部分的面积为()(A)1(B)2(C)1+4(D)2-417.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为()(A)18π(B)9π(C)6π(D)3π18.(山东省)如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()(A)2条(B)3条(C)4条(D)5条19.(南京市)如图,正六边形ABCDEF的边长的上a,分别以C、F为圆心,a为半径画弧,则图中阴影部分的面积是()(A)261a(B)231a(C)232a(D)234a20.(杭州市)过⊙O内一点M的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为()(A)3厘米(B)5厘米(C)2厘米(D)5厘米21.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()(A)12π(B)15π(C)30π(D)24π22.(安微省)已知⊙O的直径AB与弦AC的夹角为30,过C点的切线PC与AB延长线交P.PC=5,则⊙O的半径为()(A)335(B)635(C)10(D)523.(福州市)如图:PA切⊙O于点A,PBC是⊙O的一条割线,有PA=32,PB..=BC,那么BC的长是()(A)3(B)32(C)3(D)3224.(河南省)如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1.5π(C)2π(D)2.5π25.(四川省)正六边形的半径为2厘米,那么它的周长为()(A)6厘米(B)12厘米(C)24厘米(D)122厘米26.(四川省)一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为()(A)0.09π平方米(B)0.3π平方米(C)0.6平方米(D)0.6π平方米27.(贵阳市)一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是()(A)66π平方厘米(B)30π平方厘米(C)28π平方厘米(D)15π平方厘米28.(新疆乌鲁木齐)在半
本文标题:圆知识梳理题型归纳总结附答案-详细知识点归纳总结中考真题
链接地址:https://www.777doc.com/doc-1791372 .html