您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初三数学-二次函数-知识点总结
初三数学二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而bc,可以为零.二次函数的定义域是全体实数.(因此:二次函数应满足两个条件:①二次项的系数不等于0,②x最高项的指数是2)2.二次函数2yaxbxc的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵abc,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1.二次函数基本形式:2yax的性质:①,a的绝对值决定开口的大小(a的绝对值越大,抛物线的开口越小,a的绝对值越小,抛物线的开口越大)②a的符号决定开口的方向(a>0,开口向上,a<0开口向下)2.2yaxc的性质:上加下减。(c>0,将2yax向上移动,c<0将2yax的图像向下移动=a的符号开口方向顶点坐标对称轴性质0a向上00,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值0.0a向下00,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值c.0a向下0c,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值c.3.2yaxh的性质:左加右减。4.2yaxhk的性质:a的符号开口方向顶点坐标对称轴性质0a向上0h,直线X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.0a向下0h,直线X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上hk,直线X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下hk,直线X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.三、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;⑵保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下:向右(h0)【或左(h0)】平移|k|个单位向上(k0)【或下(k0)】平移|k|个单位向右(h0)【或左(h0)】平移|k|个单位向右(h0)【或左(h0)】平移|k|个单位向上(k0)【或下(k0)】平移|k|个单位向上(k0)【或向下(k0)】平移|k|个单位y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax22.平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)⑵cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)四、二次函数2yaxhk与2yaxbxc的比较从解析式上看,2yaxhk与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbyaxaa,其中2424bacbhkaa,.五、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()yaxhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10x,,20x,(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数2yaxbxc的性质1.当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,y有最小值244acba.2.当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa时,y有最大值244acba.七、二次函数解析式的表示方法1.一般式:2yaxbxc(a,b,c为常数,0a);2.顶点式(又称为对称式):2()yaxhk(a,h,k为常数,0a);3.两根式(又称为两点式):12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2yaxbxc中,a作为二次项系数,显然0a.⑴当0a时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当0a时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧.⑵在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.ab的符号的判定:对称轴abx2在y轴左边则0ab,在y轴的右侧则0ab,概括的说就是“左同右异”总结:3.常数项c⑴当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要abc,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式(三点式);2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式(对称式);3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式(两点);4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc当函数值0y时的特殊情况.图象与x轴的交点个数:①当240bac时,图象与x轴交于两点1200AxBx,,,12()xx,其中的12xx,是一元二次方程200axbxca的两根.这两点间的距离2214bacABxxa(即.二次函数与x轴两个交点的距离)②当0时,图象与x轴只有一个交点;③当0时,图象与x轴没有交点.1'当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;2'当0a时,图象落在x轴的下方,无论x为任何实数,都有0y.2.抛物线2yaxbxc的图象与y轴一定相交,交点坐标为(0,)c;十、函数的应用二次函数应用刹车距离何时获得最大利润最大面积是多少注:在实际应用中凡是需要求最大,最小(或极值)问题一般都要考虑用二次函数的最大值或最小值二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数2)2(22mmxmy的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数bkxy的图像在第一、二、三象限内,那么函数12bxkxy的图像大致是()yyyy110xo-1x0x0-1xABCD3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35x,求这条抛物线的解析式。4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线2yaxbxc(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题。【例题经典】由抛物线的位置确定系数的符号例1(1)二次函数2yaxbxc的图像如图1,则点),(acbM在()A.第一象限B.第二象限C.第三象限D.第四象限(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个(1)(2)【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1x12,与y轴的正半轴的交点在点(O,2)的下方.下列结论:①ab0;②2a+cO;③4a+cO;④2a-b+1O,其中正确结论的个数为()A1个B.2个C.3个D.4个答案:D会用待定系数法求二次函数解析式例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为()A(2,-3)B.(2,1)C(2,3)D.(3,2)答案:C例4、如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例5、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.例6、“已知函数cbxxy221的图象经过点A(c,-2),求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。(2)请你根据已有的信息,在原题中的
本文标题:初三数学-二次函数-知识点总结
链接地址:https://www.777doc.com/doc-1793646 .html