您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 24.1.2垂直于弦的直径.ppt
24.1.2垂直于弦的直径1.理解圆的轴对称性及垂径定理及其它的推证过程;能初步应用垂径定理进行计算和证明.2.进一步培养学生观察问题、分析问题和解决问题的能力.3.通过圆的对称性,培养学生的数学审美观,并激发学生对数学的热爱.学习目标•学习重点:理解圆的轴对称性,掌握垂径定理及其推论,学会运用垂径定理等结论解决一些有关证明、计算和作图问题。•学习难点:垂径定理及其推论。自学指导•认真看书81-83页,独立完成以下问题,看谁做得又对又快?•1、结合81探究,同学们动手操作,你发现了什么?你得到什么结论?你会证明你的结论吗?•2、什么是垂径定理?它的推论是什么?•3、你知道解例2的每步依据吗?问题&探究1用纸剪一个圆(课前布置学生准备好)圆是轴对称图形,任何一条直径所在直线都是它的对称轴2.探究新知不借助任何工具,你能找到圆形纸片的圆心吗?由此你能得到圆的什么特性?实践探究把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?·OABCDE活动二(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:AE=BE⌒⌒弧:AC=BC,AD=BD⌒⌒把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC和BC重合,AD和BD重合.⌒⌒⌒⌒叠合法垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。题设结论(1)过圆心(2)垂直于弦}{(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧3.获得新知垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧CD⊥AB∵CD是直径,∴AE=BE,⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE•老师提示:•垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.3.获得新知知二推三问题&探究3问题:把垂径定理中的题设垂直于弦的直径换为平分弦的直径。你会得到什么结论?垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。∴CD⊥AB,∵CD是直径,AE=BE⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE(2)“不是直径”这个条件能去掉吗?如果不能,请举出反例。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。·OABCD①CD是直径,②CD⊥AB,③AM=BM⌒⌒④AC=BC,⌒⌒⑤AD=BD.如果具备上面五个条件中的任何两个,那么一定可以得到其他三个结论吗?一条直线满足:(1)过圆心;(2)垂直于弦;(3)平分弦(不是直径);(4)平分弦所对优弧;(5)平分弦所对的劣弧.●OABCD└M课堂讨论根据已知条件进行推导:①过圆心②垂直于弦③平分弦④平分弦所对优弧⑤平分弦所对劣弧(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。①⑤③④②①④③②⑤①③②④⑤①④⑤②③(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。①②③④⑤只要具备上述五个条件中任两个,就可以推出其余三个.(4)若,CD是直径,则、、.(1)若CD⊥AB,CD是直径,则、、.(2)若AM=MB,CD是直径,则、、.(3)若CD⊥AB,AM=MB,则、、.1.如图所示:练习●OABCD└MAM=BM⌒⌒AC=BC⌒⌒AD=BDCD⊥AB⌒⌒AC=BC⌒⌒AD=BDCD是直径⌒⌒AC=BC⌒⌒AD=BD⌒⌒AC=BCCD⊥ABAM=BM⌒⌒AD=BDEDCOAB下列图形是否具备垂径定理的条件?ECOABDOABc是不是是不是OEDCABEDCOABOBCADDOBCAOBAC垂径定理的几个基本图形:CD过圆心CD⊥AB于EAE=BEAC=BCAD=BD1、如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A、∠COE=∠DOEB、CE=DEC、OE=AED、BD=BC⌒⌒·OABECDC2、如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm。·OABE解:连接OA,∵OE⊥AB∴cmOEOAAE8=6+10=+=2222∴AB=2AE=16cm3、如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。·OABE解:过点O作OE⊥AB于E,连接OA∴cmOEcmABAE3=4=21=∴cmOEAEAE5=3+4=+=2222即⊙O的半径为5cm.4、如图,CD是⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,求直径CD的长。·OABECD解:连接OA,∵CD是直径,OE⊥AB∴AE=1/2AB=5设OA=x,则OE=x-1,由勾股定理得x2=52+(x-1)2解得:x=13∴OA=13∴CD=2OA=26即直径CD的长为26.如图,1400多年前,我国隋代建造的赵州石拱桥主桥拱是圆弧形,它的跨度(弧所对的弦长)是37m,拱高(弧的中点到弦的距离)为7.23m,你能求赵州桥主桥拱的半径吗?例237m7.23mABOCD关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦构成直角三角形,便将问题转化为直角三角形的问题。ABOCD解:如图,用AB表示主桥拱,设AB所在的圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与AB交于点C,则D是AB的中点,C是AB的中点,CD就是拱高.∴AB=37m,CD=7.23m∴AD=1/2AB=18.5m,OD=OC-CD=R-7.23∵222ADODOA解得R≈27.3(m)即主桥拱半径约为27.3m.⌒⌒22223.75.18RR2.(湖州·中考)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OEB.CE=DE12CEC.OE=D.∠AOC=60°B1.(绍兴·中考)已知⊙O的半径为5,弦AB的弦心距为3,则AB的长是()A.3B.4C.6D.8D四、当堂检测巩固新知2、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.AE-CE=BE-DE.所以,AC=BDE.ACDBO通过本课时的学习,需要我们:1.理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明.2.掌握垂径定理的推论,明确理解“知二推三”的意义.利用垂径定理及其推论解决相应的数学问题.五、课堂小结六、家庭作业•1、必做p89页2题90页9题•2、选作p89页1题
本文标题:24.1.2垂直于弦的直径.ppt
链接地址:https://www.777doc.com/doc-1795011 .html