您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第二十一章一元二次方程单元测试题A卷(含答案)
1加2教育1一元二次方程单元测试题(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足()A.a≠1B.a≠-1C.a≠±1D.为任意实数2.用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6B.(x-1)2=6C.(x+2)2=9D.(x-2)2=93.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k-1B.k-1且k≠0C.k1D.k1且k≠04.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018B.2008C.2014D.20125.方程x2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.不能确定6.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定7.已知函数y=kx+b的图象如图211,则一元二次方程x2+x+k-1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定8.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则ba+ab的值是()A.7B.-7C.11D.-11图211图2129.如图212,在长为100m,宽为80m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为xm,则可列方程为()A.100×80-100x-80x=7644B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644D.100x+80x=35610.图213是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()图213A.32B.126C.135D.144二、填空题(本大题共6小题,每小题4分,共24分)11.一元二次方程x2-3=0的解为________________.12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:________,一次项系数为:________,常数项为:________.13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是1加2教育2__________.14.已知x1,x2是方程x2-2x-1=0的两个根,则1x1+1x2=__________.15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________.16.一个长100m,宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程__________________________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.用公式法解方程:2x2-4x-5=0.18.用配方法解方程:x2-4x+1=0.19.用因式分解法解方程:(y-1)2+2y(1-y)=0.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形状.21.如图214,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?图2141加2教育322.在实数范围内定义一种新运算“”,其规则为:ab=a2-b2,根据这个规则:(1)求43的值;(2)求(x+2)5=0中x的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知:关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24.已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0,x2+x-2=0,x2+2x-3=0,…x2+(n-1)x-n=0.(1)请解上述4个一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?1加2教育4第二十一章自主检测1.C2.B3.B4.A5.C6.C7.C8.A9.C10.D11.x=±312.x2-6x+5=0x2-6513.-614.-215.k≤4,且k≠016.(x+100)(200-x)=2000017.解:∵a=2,b=-4,c=-5,∴b2-4ac=(-4)2-4×2×(-5)=560.∴x=4±562×2=4±2144.∴x1=2+142,x2=2-142.18.解:∵x2-4x+1=0,∴x2-4x+4=4-1,即(x-2)2=3.∴x1=2+3,x2=2-3.19.解:∵(y-1)2+2y(1-y)=0,∴(y-1)2-2y(y-1)=0.∴(y-1)(y-1-2y)=0.∴y-1=0或y-1-2y=0.∴y1=1,y2=-1.20.解:将a2-6a+b2-10c+c2=8b-50变形为a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0.∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5.∵32+42=52,∴△ABC为直角三角形.21.解:设道路宽为xm,(32-2x)(20-x)=570,640-32x-40x+2x2=570,x2-36x+35=0,(x-1)(x-35)=0,x1=1,x2=35(舍去).答:道路应宽1m.22.解:(1)4△3=42-32=16-9=7.(2)∵(x+2)△5=0,即(x+2)2-52=0,∴x1=-7,x2=3.23.解:(1)当Δ≥0时,方程有两个实数根,∴[-2(m+1)]2-4m2=8m+4≥0.∴m≥-12.(2)取m=0时,原方程可化为x2-2x=0,解得x1=0,x2=2.(答案不唯一)24.解:(1)x2-1=(x+1)(x-1)=0,∴x1=-1,x2=1.x2+x-2=(x+2)(x-1)=0,∴x1=-2,x2=1.x2+2x-3=(x+3)(x-1)=0,∴x1=-3,x2=1.…x2+(n-1)x-n=(x+n)(x-1)=0,∴x1=-n,x2=1.(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.1加2教育525.解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000.解得x=5或x=10.为了使顾客得到实惠,所以x=5.(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.
本文标题:第二十一章一元二次方程单元测试题A卷(含答案)
链接地址:https://www.777doc.com/doc-1819133 .html