您好,欢迎访问三七文档
对m1用动量定理:F1t=m1V1′-m1V1-----(1)守恒定律的推导m1m2V1V2设m1、m2分别以V1V2相碰,碰后速度分别V1′V2′碰撞时间t对m2用动量定理:F2t=m2V2′-m2V2------(2)由牛顿第三定律:F1=-F2--------------------(3)m1v1′-m1v1=-(m2v2′-m2v2)m1v1′+m2v2′=m1v1+m2v21.动量守恒定律的表达式量等大反向的增表示系统内两物体动量ΔP(3)ΔP动量增量为零统表示相互作用过程中系0ΔP(2)ΔP系统总动量相等表示初末状态vmvmvmv(1)m2121'22'112211一、动量守恒定律的内容:相互作用的几个物体组成的系统,如果不受外力作用,或它们受到的外力的合力为0,则系统的总动量保持不变。2.动量守恒定律成立的条件。⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。例1、在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为m1和m2。讨论:以两振子组成的系统。1)系统外力有哪些?2)系统内力是什么力?3)系统在振动时动量是否守恒?机械能是否守恒?4)如果水平地面不光滑,地面与两振子的动摩擦因数μ相同,讨论m1=m2和m1≠m2两种情况下振动系统的动量是否守恒。机械能是否守恒?动量守恒的条件:系统不受外力或所受外力的合力为零;机械能守恒的条件:只有重力或系统内的弹力做功。典型例题:动量守恒的条件例2、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:()A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C、动量守恒、机械能不守恒D、动量不守恒、机械能守恒B典型例题:动量守恒的条件例3、如图所示,光滑水平面上有A、B两木块,A、B紧靠在一起,子弹以速度V0向原来静止的A射去,子弹击穿A留在B中。下面说法正确的是()BAA、子弹击中A的过程中,子弹和A组成的系统动量守恒B、子弹击中A的过程中,A和B组成的系统动量守恒C、A、B和子弹组成的系统动量一直守恒D、子弹击穿A后子弹和B组成的系统动量守恒典型例题:动量守恒的条件ABC例、如图所示,A、B两木块的质量之比为3:2,原来静止在平板小车C上,A、B间有一根被压缩了的轻弹簧,A、B与平板车的上表面间的动摩擦因素相同,地面光滑。当弹簧突然释放后,A、B在小车上滑动时有:()A、A、B系统动量守恒B、A、B、C系统动量守恒C、小车向左运动D、小车向右运动典型例题:动量守恒的条件例5、如图所示,在光滑水平面上放置A、B两个物体,其中B物体与一个质量不计的弹簧相连且静止在水平面上,A物体质量是m,以速度v0逼近物体B,并开始压缩弹簧,在弹簧被压缩过程中()A、在任意时刻,A、B组成的系统动量相等,都是mv0B、任意一段时间内,两物体所受冲量大小相等.C、在把弹簧压缩到最短过程中,A物体动量减少,B物体动量增加.D、当弹簧压缩量最大时,A、B两物体的速度大小相等.典型例题:动量守恒的条件(1)系统性:动量守恒定律是对一个物体系统而言的,具有系统的整体性,而对物体系统的一部分,动量守恒定律不一定适用。3.应用动量守恒定律的注意点:•总例:质量为M的小车上站有一个质量为m的人,它们一起以速度V沿着光滑的水平面匀速运动,某时刻人沿竖直方向跳起。则跳起后,车子的速度为:VmMMD.无法确定。C.A.VVmMm-B.A(2)矢量性:选取正方向,与正方向同向的为正,与正方向反向的为负,方向未知的,设与正方向同向,结果为正时,方向即于正方向相同,否则,与正方向相反。(3)瞬(同)时性:动量是一个瞬时量,动量守恒是指系统任意瞬时动量恒定。方程左边是作用前某一时刻各物体的动量的和,方程右边是作用后某时刻系统各物体动量的和。不是同一时刻的动量不能相加。(4)相对性:由于动量的大小与参照系的选择有关,因此在应用动量守恒定律时,应注意各物体的速度必须是相对同一参照物的。例1、一个人坐在光滑的冰面的小车上,人与车的总质量为M=70kg,当他接到一个质量为m=20kg以速度v=5m/s迎面滑来的木箱后,立即以相对于自己u=5m/s的速度逆着木箱原来滑行的方向推出,求小车获得的速度。v=5m/sM=70kgm=20kgu=5m/s解:整个过程动量守恒,但是速度u为相对于小车的速度,v箱对地=u箱对车+V车对地=u+V规定木箱原来滑行的方向为正方向对整个过程由动量守恒定律,mv=MV+mv箱对地=MV+m(u+V)注意u=-5m/s,代入数字得V=20/9=2.2m/s方向跟木箱原来滑行的方向相同例2、一个质量为M的运动员手里拿着一个质量为m的物体,踏跳后以初速度v0与水平方向成α角向斜上方跳出,当他跳到最高点时将物体以相对于运动员的速度为u水平向后抛出。问:由于物体的抛出,使他跳远的距离增加多少?解:跳到最高点时的水平速度为v0cosα抛出物体相对于地面的速度为v物对地=u物对人+v人对地=-u+v规定向前为正方向,在水平方向,由动量守恒定律(M+m)v0cosα=Mv+m(v–u)v=v0cosα+mu/(M+m)∴Δv=mu/(M+m)平抛的时间t=v0sinα/g增加的距离为gαsinvumMmtvx0(5)注意动量守恒定律的优越性和广泛性优越性——跟过程的细节无关广泛性——不仅适用于两个物体的系统,也适用于多个物体的系统;不仅适用于正碰,也适用于斜碰;不仅适用于低速运动的宏观物体,也适用于高速运动的微观物体。例、质量均为M的两船A、B静止在水面上,A船上有一质量为m的人以速度v1跳向B船,又以速度v2跳离B船,再以v3速度跳离A船……,如此往返10次,最后回到A船上,此时A、B两船的速度之比为多少?解:动量守恒定律跟过程的细节无关,对整个过程,由动量守恒定律(M+m)v1+Mv2=0v1/v2=-M/(M+m)例、质量为50kg的小车静止在光滑水平面上,质量为30kg的小孩以4m/s的水平速度跳上小车的尾部,他又继续跑到车头,以2m/s的水平速度(相对于地)跳下,小孩跳下后,小车的速度多大?解:动量守恒定律跟过程的细节无关,对整个过程,以小孩的运动速度为正方向由动量守恒定律mv1=mv2+MVV=m(v1-v2)/M=60/50m/s=1.2m/s小车的速度跟小孩的运动速度方向相同例:总质量为M的火车在平直轨道上以速度V匀速行驶,尾部有一节质量为m的车厢突然脱钩,设机车的牵引力恒定不变,阻力与质量成正比,则脱钩车厢停下来时,列车前段的速度多大?瞬时性:脱钩前某一时刻;脱钩车厢停下来的瞬时。方向性:动量方向与速度方向相同相对性:以地面为参照物MV/(M-m)思考:若车在行进中所受阻力为车重的k倍,当脱钩车厢停下时,距列车的距离有多远?(可用多种方法)二、怎样应用动量守恒定律列方程(12分)质量为M的小船以速度V0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾,现小孩a沿水平方向以速率(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度.解:设小孩b跃出后小船向前行驶的速度为V,根据动量守恒定律,有1)2(0mmMVVmM2)21(0VMmV解得甲乙SNNSV甲V乙将两条完全相同的磁铁分别固定在质量相等的小车上,水平面光滑,开始时甲车速度大小为3m/s,乙车速度大小为2m/s。方向相反并在同一直线上,如图。(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最短时,乙车的速度是多大?有一质量为m=20千克的物体,以水平速度v=5米/秒的速度滑上静止在光滑水平面上的小车,小车质量为M=80千克,物体在小车上滑行距离ΔL=4米后相对小车静止。求:(1)物体与小车间的滑动摩擦系数。(2)物体相对小车滑行的时间内,小车在地面上运动的距离。解:画出运动示意图如图示vmMVmMLS由动量守恒定律(m+M)V=mvV=1m/s由能量守恒定律μmgL=1/2×mv2-1/2×(m+M)V2∴μ=0.25对小车μmgS=1/2×MV2∴S=0.8m系统的动量守恒不是系统内所有物体的动量不变,而是系统内每个物体动量的矢量和不变。例:两只小船平行逆向行驶,航线邻近,当它们头尾相齐时,由每只船上各投质量m=50kg的麻袋到对面另一只船上,结果载重较小的一只船停了下来,另一只船则以V=8.5m/s的速度向原方向行驶,设两只船及船上的载重物m1=500kg,m2=1000kg,问:在交换麻袋前两只船的速率各为多少?三、多个物体组成的物体系动量守恒练习1:质量M=2kg,的小平板车,静止在光滑水平面上,车的一端静止着质量为mA=2kg的物体A(可视为质点),一颗质量为mB=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A仍静止在车上,若物体A与小车间的动摩擦因数u=0.5,取g=10m/s2,求平板车最后的速度是多大?MAV0思考:1、子弹穿过A后的瞬间A的速度多大?2、从此时开始到A与M相对静止,A与M的位移分别是多少?3、A相对M的位移是多少?A、M损失的机械能是多少?2.甲乙两个溜冰者质量分别为48kg、50kg.甲手里拿着质量为2kg的球.两个人在冰面上均以2m/s的速度相向滑行.(不计阻力)甲将球传给乙,乙又把球传给甲(两人传出的球速度大小相对地面是相等的).求下面两种情况,甲、乙的速度大小之比。(1)这样抛接2n次后(2)这样抛接2n+1次后3.如图所示,甲车质量为2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1kg的小物体。乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲获得8m/s的速度,物体滑到乙车上,若以车足够长,上表面与物体的摩擦因数为0.2,则物体在乙车上表面滑行多少时间相对乙车静止?(g=10m/s2)甲乙4.平直的轨道上有一节车厢,车厢以12m/s的速度做匀速直线运动,某时刻与一质量为其一半的静止的平板车挂接时,车厢顶边缘上一个小钢球向前滚出,如图所示,平板车与车厢顶高度差为1.8m,设平板车足够长,求钢球落在平板车上何处?(g取10m/s2)v0例:质量为1kg的物体从距地面5m高处由静止自由下落,正落在以5m/s的速度沿光滑水平面匀速行驶的装有沙子的小车中,车与沙子的总质量为4kg。当物体与沙子静止后,小车的速度多大?思考:若将物体落入沙子中的运动视为匀减速运动,物体陷入沙子中的深度为20cm,求物体落入沙子中时受到的冲力有多大?四、系统动量不守恒,但在某一方向上守恒•质练习1.:质量为M的滑块静止在光滑的水平桌面上,滑块的弧面光滑且足够高、底部与桌面相切。一个质量为m的小球以初速度V向滑块滚来,则小球到达最高点时,小球、滑块的速度多大?mV/(M+m)2:一质量为M=0.5kg的斜面体A,原来静止在光滑水平面上,一质量m=40g的小球B以水平速度V0=30m/s运动到斜面A上,碰撞时间极短,碰撞后变为竖直向上运动,求A碰后的速度。V0V′AB在动量受恒的应用中,常常会遇到相互作用的两物体相距最近、避免相撞和物体开始反向等临界问题。求解这类问题的关键是充分利用反证法、极限法分析物体的临界状态,挖掘问题中隐含的临界条件,选取适当的系统和过程运用动量守恒定律进行解答。五、动量受定律应用中的临界问题例:甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30kg,乙和他的冰车总质量也为30kg,游戏时,甲推着一个质量为m=15kg的箱子,和他一起以大小为V0=2m/s的速度滑行,乙以同样大小的速度迎面而来,为了避免相撞
本文标题:动量守恒定律
链接地址:https://www.777doc.com/doc-1827293 .html