您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 全国初中数学竞赛辅导(初3)-第6讲-二次函数
第六讲二次函数二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一.另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用.通过对二次函数的学习,使我们能进一步理解函数思想和函数方法,提高分析问题、解决问题的能力.正确掌握二次函数的基本性质是学好二次函数的关键.1.二次函数的图像及其性质例1(1)设抛物线y=2x2,把它向右平移p个单位,或向下移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p,q的值.(2)把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值.(3)把抛物线y=ax2+bx+c向左平移三个单位,向下平移两个单位析式.解(1)抛物线y=2x2向右平移p个单位后,得到的抛物线为y=2(x-p)2.于是方程2(x-p)2=x-4有两个相同的根,即方程2x2-(4p+1)x+2p2+4=0的判别式△=(4p+1)2-4·2·(2p2+4)=0,抛物线y=2x2向下平移q个单位,得到抛物线y=2x2-q.于是方程2x2-q=x-4有两个相同的根,即△=1-4·2(4-q)=0,(2)把y=2x2向左平移p个单位,向上平移q个单位,得到的抛物线为y=2(x+p)2+q.于是,由题设得解得p=-2,q=1,即抛物线向右平移了两个单位,向上平移了一个单位.解得h=3,k=2.原二次函数为说明将抛物线y=ax2+bx+c向右平移p个单位,得到的抛物线是y=a(x-p)2+b(x-p)+c;向左平移p个单位,得到的抛物线是y=a(x+p)2+b(x+p)+c;向上平移q个单位,得到y=ax2+bx+c+q;向下平移q个单位,得到y=ax2+bx+c-q.例2已知抛物线y=ax2+bx+c的一段图像如图3-7所示.(1)确定a,b,c的符号;(2)求a+b+c的取值范围.解(1)由于抛物线开口向上,所以a>0.又抛物线经过点(0,-1),合a>0便知b<0.所以a>0,b<0,c<0.(2)记f(x)=ax2+bx+c.由图像及(1)知所以a+b+c=a+(a-1)-1=2(a-1),-2<a+b+c<0.例3已知抛物线y=ax2-(a+c)x+c(其中a≠c)不经过第二象限.(1)判断这条抛物线的顶点A(x0,y0)所在的象限,并说明理由;(2)若经过这条抛物线顶点A(x0,y0)的直线y=-x+k与抛物线的另一解(1)因为若a>0,则抛物线开口向上,于是抛物线一定经过第二象限,所以当抛物线y=ax2-(a+c)x+c的图像不经过第二象限时,必有a<0.又当x=0时,y=c,即抛物线与y轴的交点为(0,c).因为抛物线不经过第二象限,所以c≤0.于是所以顶点A(x0,y0)在第一象限.B在直线y=-x+k上,所以0=-1+k,所以k=1.又由于直线y=-x+1经过-2x2+2x.2.求二次函数的解析式求二次函数y=ax2+bx+c(a≠0)的解析式,需要三个独立的条件确定三个系数a,b,c.一般地有如下几种情况:(1)已知抛物线经过三点,此时可把三点坐标代入解析式,得到关于a,b,c的三元一次方程组,解方程组可得系数a,b,c.或者已知抛物线经过两点,这时把两点坐标代入解析式,得两个方程,再利用其他条件可确定a,b,c.或者已知抛物线经过某一点,这时把这点坐标代入解析式,再结合其他条件确定a,b,c.(2)已知抛物线的顶点坐标为(h,k),这时抛物线可设为y=a(x-h)2+k,再结合其他条件求出a.(3)已知抛物线与x轴相交于两点(x1,0),(x2,0),此时的抛物线可设为y=a(x-x1)(x-x2),再结合其他条件求出a.例4设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=-1,解由f(0)=2,f(1)=-1,得即c=2,b=-(a+3).因此所求的二次函数是y=ax2-(a+3)x+2.由于二次函数的图像在x轴上所截得的线段长,就是方程ax2-(a+3)x+2=0两根差的绝对值,而这二次方程的两根为于是因此所求的二次函数表达式为例5设二次函数f(x)=ax2+bx+c,当x=3时取得最大值10,并且它的图像在x轴上截得的线段长为4,求a,b,c的值.分析当x=3时,取得最大值10的二次函数可写成f(x)=a(x-3)2+10,且a<0.解因为抛物线的对称轴是x=3,又因为图像在x轴上截得的线段长是4,所以由对称性,图像与x轴交点的横坐标分别是1,5.因此,二次函数又可写成f(x)=a(x-1)(x-5)的形式,从而a(x-3)2+10=a(x-1)(x-5),所以例6如图3-8,已知二次函数y=ax2+bx+c(a>0,b<0)的图像与x轴、y轴都只有一个公共点,分别为点A,B,且AB=2,b+2ac=0.(1)求二次函数的解析式;(2)若一次函数y=x+k的图像过点A,并和二次函数的图像相交于另一点C,求△ABC的面积.解(1)因二次函数的图像与x轴只有一个公共点,故b2-4ac=0,而b+2ac=0,所以b2+2b=0,b=-2(因为b<0).点B的坐标为(0,c),AB=2,由勾股定理得所以1+a2c2=4a2.因为ac=1,所以4a2=2,练习六1.填空:(1)将抛物线y=2(x-1)2+2向右平移一个单位,再向上平移三个单位,得到的图像的解析式为______.(2)已知y=x2+px+q的图像与x轴只有一个公共点(-1,0),则(p,q)=____.(3)已知二次函数y=a(x-h)2+k的图像经过原点,最小值为-8,且形(4)二次函数y=ax2+bx+c的图像过点A(-1,0),B(-3,2),且它与x轴的两个交点间的距离为4,则它的解析式为________.(5)已知二次函数y=x2-4x+m+8的图像与一次函数y=kx+1的图像相交于点(3,4),则m=___,k=_____.(6)关于自变量x的二次函数y=-x2+(2m+2)x-(m2+4m-3)中,m是不小于零的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边,则这个二次函数的解析式为____.2.设抛物线y=x2+2ax+b与x轴有两个不同交点.(1)把它沿y轴平移,使所得到的抛物线在x轴上截得的线段的长度是原来的2倍,求所得到的抛物线;(2)通过(1)中所得曲线与x轴的两个交点,及原来的抛物线的顶点,作一条新的抛物线,求它的解析式.3.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.(2)若△ABC是等腰直角三角形,求b2-4ac的值;(3)若b2-4ac=12,试判断△ABC的形状.4.有两个关于x的二次函数C1:y=ax2+4x+3a和C2:y=x2+2(b+2)x+b2+3b.当把C1沿x轴向左平移一个单位后,所得抛物线的顶点恰与C2的顶点关于x轴对称,求a,b.5.已知二次函数y=x2-2bx+b2+c的图像与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图像上,求a的取值范围.
本文标题:全国初中数学竞赛辅导(初3)-第6讲-二次函数
链接地址:https://www.777doc.com/doc-1829775 .html