您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考题数学分类全集66圆与相似三角形1
26.(本小题满分12分)如图12-1所示,在ABC△中,2ABAC,90A∠,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.(1)点EF,的移动过程中,OEF△是否能成为45EOF∠的等腰三角形?若能,请指出OEF△为等腰三角形时动点EF,的位置.若不能,请说明理由.(2)当45EOF∠时,设BEx,CFy,求y与x之间的函数解析式,写出x的取值范围.(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图12-2),试探究直线EF与O的位置关系,并证明你的结论.26.解:如图,(1)点EF,移动的过程中,OEF△能成为45EOF°的等腰三角形.此时点EF,的位置分别是:①E是BA的中点,F与A重合.②2BECF.③E与A重合,F是AC的中点.············3分(2)在OEB△和FOC△中,135EOBFOC°,135EOBOEB°,FOCOEB∴.又BC∵,OEBFOC∴△∽△.···························5分BEBOCOCF∴.BEx∵,CFy,2212222OBOC,2(12)yxx∴≤≤.··························8分(3)EF与O相切.OEBFOC∵△∽△,BEOECOOF∴.图12-1ABCOEF图12-2ABCOEFBEOEBOOF∴.即BEBOOEOF.又45BEOF∵°,BEOOEF∴△∽△.BEOOEF∴.···························10分∴点O到AB和EF的距离相等.AB∵与O相切,∴点O到EF的距离等于O的半径.EF∴与O相切.····························12分24.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=53,AD=12.⑴求证:△ANM≌△ENM;⑵求证:FB是⊙O的切线;⑶证明四边形AMEN是菱形,并求该菱形的面积S.24.⑴证明:∵BC是⊙O的直径∴∠BAC=90o又∵EM⊥BC,BM平分∠ABC,∴AM=ME,∠AMN=EMN又∵MN=MN,∴△ANM≌△ENM⑵∵AB2=AF·AC∴ABAFACAB又∵∠BAC=∠FAB=90o∴△ABF∽△ACB∴∠ABF=∠C又∵∠FBC=∠ABC+∠FBA=90o∴FB是⊙O的切线⑶由⑴得AN=EN,AM=EM,∠AMN=EMN,又∵AN∥ME,∴∠ANM=∠EMN,∴∠AMN=∠ANM,∴AN=AM,∴AM=ME=EN=AN∴四边形AMEN是菱形∵cos∠ABD=53,∠ADB=90o∴53ABBD设BD=3x,则AB=5x,,由勾股定理xx-xAD43522而AD=12,∴x=3∴BD=9,AB=15∵MB平分∠AME,∴BE=AB=15∴DE=BE-BD=6∵ND∥ME,∴∠BND=∠BME,又∵∠NBD=∠MBE∴△BND∽△BME,则BEBDMEND设ME=x,则ND=12-x,15912xx,解得x=215∴S=ME·DE=215×6=4524.(本小题满分9分)如图8-1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)(3分)求证:△ABC∽△ACD;(2)(6分)若P是AY上一点,AP=4,且sinA=35,①如图8-2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).图8-2图8-124.(1)由已知,CD⊥BC,∴∠ADC=90°–∠CBD,···········································1分又∵⊙O切AY于点B,∴OB⊥AB,∴∠OBC=90°–∠CBD,························2分∴∠ADC=∠OBC.又在⊙O中,OB=OC=R,∴∠OBC=∠ACB,∴∠ACB=∠ADC.又∠A=∠A,∴△ABC∽△ACD.·····························································3分(2)由已知,sinA=35,又OB=OC=R,OB⊥AB,∴在Rt△AOB中,AO=sinOBA=35R=53R,AB=225()3RR=43R,∴AC=53R+R=83R.··············································································4分由(1)已证,△ABC∽△ACD,∴ACADABAC,··············································5分∴834833RADRR,因此AD=163R.································································6分①当点D与点P重合时,AD=AP=4,∴163R=4,∴R=34.···························7分②当点D与点P不重合时,有以下两种可能:i)若点D在线段AP上(即0R34),PD=AP–AD=4–163R;·····························8分ii)若点D在射线PY上(即R34),PD=AD–AP=163R–4.·······························9分综上,当点D在线段AP上(即0R34)时,PD=4–163R;当点D在射线PY上(即R34)时,PD=163R–4.又当点D与点P重合(即R=34)时,PD=0,故在题设条件下,总有PD=|163R–4|(R0).26.(2010广西百色,26,10分)如图1,AB是⊙O的直径,BC⊥AB,垂足为B,AC交⊙O于点D.(1)用尺规作图:过点D作DEBC,垂足为E(保留作图痕迹,不写作法和证明);(2)在(1)的条件下,求证:△BED∽△DEC;(3)若点D是AC的中点(如图2),求sin∠OCB的值.ABCDOCBODA图1图2【分析】(1)要证△BED∽△DEC,有一公共角,故只要证明∠C=∠EDB即可.(2)在Rt△OBC中,只要找到OB与OC的关系即可.由于∠ADB=90,D是AC的中点,所以BD垂直平分AC,所以△ABC是等腰直角三角形.答案:(1)如图(2)证明:∵AB是⊙O的直径∴∠ADB=∠CDB=90∴∠CDE+∠EDB=90又∵DE⊥BC∴∠CED=∠DEB=90∴∠CDE+∠C=90∴∠C=∠EDB∴△BED∽△DEC(3)解:∵∠ADB=90,D是AC的中点∴BD垂直平分AC∴BC=AB=2OB设OB=k则BC=2k∴OC=22(2)kk=5k∴sin∠OCB=OBOC=5kk=5520(8分)如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.(1)求证:ABE~ABD;(2)求tanADB的值;(3)延长BC至F,连接FD,使BDF的面积等于83,求EDF的度数.EODCBAABCDOFOEADBC20.(1)∵点A是弧BC的中点∴∠ABC=∠ADB又∵∠BAE=∠BAE∴△ABE∽△ABD...........................3分(2)∵△ABE∽△ABD∴AB2=2×6=12∴AB=23在Rt△ADB中,tan∠ADB=33632..............................3分(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形,∠EDF=60°...........................................................2分21.(10分)如图9,已知,在△ABC中,∠ABC=090,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.(1)求证:ED是⊙O的切线.(2)如果CF=1,CP=2,sinA=54,求⊙O的直径BC.21、解:⑴连接OD…………………………………………1分∵BC为直径∴△BDC为直角三角形。又∵∠OBD=∠ODBRt△ADB中E为AB中点∴∠ABD=∠EDB…………………………2分∵∠OBD+∠ABD=900∴∠ODB+∠EDB=900∴ED是⊙O的切线。…………………………………………5分(2)∵PF⊥BC∴∠FPC=∠PDC又∠PCF公用∴△PCF∽△DCP………………………………………………………7分∴PC2=CF·CD图9又∵CF=1,CP=2,∴CD=4…………………………………………8分可知sin∠DBC=sinA=54∴BCDC=54即BC4=54得直径BC=5………………………………………10分26.(本小题满分10分)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F。(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.26.(本小题满分10分)解:(1)证明:连结AD、OD∵AC是直径∴AD⊥BC(2分)[来源:Z,xx,k.Com]∵AB=AC[来源:Zxxk.Com]∴D是BC的中点又∵O是AC的中点∴OD//AB(4分)∵DE⊥AB∴OD⊥DE∴DE是⊙O的切线(6分)(2)由(1)知OD//AE∴AEODFAFO(8分)∴BEABODACFCOCFC∴14242FCFC[来源:学+科+网Z+X+X+K]解得FC=2∴AF=6∴cosA=21614AFBEABAFAE(10分)25.(9分)如图,在ABC△中90ACB,D是AB的中点,以DC为直径的O交ABC△的三边,交点分别是GFE,,点.GECD,的交点为M,且46ME,:2:5MDCO.(1)求证:GEFA.(2)求O的直径CD的长.(3)若cos0.6B,以C为坐标原点,CACB,所在的直线分别为X轴和Y轴,建立平面直角坐标系,求直线AB的函数表达式.EADGBFCOM第25题图25.(9分)(1)连接DFCD是圆直径,90CFD,即DFBC90ACB,DFAC∥.······································································1分BDFA.在O中BDFGEF,GEFA.·······················2分(2)D是RtABC△斜边AB的中点,DCDA,DCAA,又由(1)知GEFA,DCAGEF.又OMEEMC,OME△与EMC△相似··············································3分OMMEMEMC2MEOMMC··································································4分又46ME,2(46)96OMMC:2:5MDCO,:3:2OMMD,:3:8OMMC································5分设3OMx,8MCx,3896xx,2x直径1020CDx.·················································································6分(3)RtABC△斜边上中线20CD,40AB在RtABC△中co
本文标题:中考题数学分类全集66圆与相似三角形1
链接地址:https://www.777doc.com/doc-1854171 .html