您好,欢迎访问三七文档
1圆的切线测试题一、选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°2.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cmB.四边形AOBC为正方形C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm23.如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.40°B.60°C.70°D.80°4.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°5.如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABEB.△ACFC.△ABDD.△ADE7.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.68.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能第1题图第2题图第3题图第4题图第5题图第6题图第7题图第8题图29.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤510.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题11.如图,AB是⊙O的直径,过B点作⊙O的切线,交弦AE的延长线于点C,作ACOD,垂足为D,若60ACB,4BC,则DE的长为.12.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,则⊙O的半径为13.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB。若PB=4,则PA的长为14.已知,如图,过⊙O外一点P作⊙O的两条切线PA、PB,切点分别为A、B.下列结论中:①OP垂直平分AB;②∠BOP=∠APB;③△ACP≌△BCP;④若∠APB=800,则∠ABO=400;⑤PA=AB.正确的有(只填正确答案的序号)三、解答题15.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.16.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________或者___________;(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.PABOC第14题图OACBDE第11题图第9题图第10题图第12题图317.如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.(1)求证:AC是⊙O的切线;(2)若BD=OB=4,求弦AE的长.18.如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.19.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.l图2图1PAOOCBBCA20.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=210,CE:EB=1:4,求CE的长.421.如图,在RtABC中,90ABC,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BFBC.⊙O是BEF的外接圆,EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:ABCEBF;(2)试判断BD与⊙O的位置关系,并说明理由.22.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.23.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.DEFOACBGHOEDAFCB5圆的切线测试题参考答案一、选择题题号12345678910答案BDCCBBBCAA二、填空题11.312.25413.3或7314.①③④三、解答题15.解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.16.解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.17.(1)证明:连接OE,∵CD与圆O相切,∴OE⊥CD,∴∠CEO=90°,∵BE∥OC,∴∠AOC=∠OBE,∠COE=∠OEB,∵OB=OE,∴∠OBE=∠OEB,∴∠AOC=∠COE,在△AOC和△EOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CEO=90°,则AC与圆O相切;(2)在Rt△DEO中,BD=OB,∴BE=OD=OB=4,∵OB=OE,∴△BOE为等边三角形,∴∠ABE=60°,∵AB为圆O的直径,∴∠AEB=90°,∴AE=BE•tan60°=4.18.(1)连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB∴AC=BC=2OC=10.(2)连接OD,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC.∴∠1+∠3=∠2+∠4,即DE⊥OD,∴DE是⊙O的切线.19.解:(1)如右图所示.图1,∵AC=BC,∴))ACBC=,∴点C是)AB的中点,连接CO,l图2图1EFDEDPAOOCBBCA6交AB于点E,由垂径定理知,点E是AB的中点,延长CE交⊙O于点D,则CD为所求作的弦;(2)图2,∵l切⊙O于点P,作射线PO,交BC于点E,则PO⊥l,∵l∥BC,∴PO⊥BC,由垂径定理知,点E是BC的中点,连接AE交⊙O于F,则AF为所求作的弦.20.(1)略;(2)如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,,即,∴x=2.∴CE=2.21.解:(1)由已知条件易得,DCEEFB,ABFEBF,又BCBF,∴ABCEBF(ASA);(2)BD与⊙O相切。理由:连接OB,则DBCDCBOFBOBF,∴90DBODBCEBOOBFEBO,∴DBOB.22.证明:(1)连接FO,易证OF∥AB,∵AC⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC∴∠FEC=∠FCE,∠OEC=∠OCE,∵Rt△ABC,∴∠ACB=90°,即:∠OCE+∠FCE=90°∴∠OEC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线(2)∵⊙O的半径为3,∴AO=CO=EO=3∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=33∵在Rt△ACD中,∠ACD=90°,CD=33,AC=6∴AD=3723.解:(1)连接OC,如图1,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图2,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=OC,∴OC==h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图3,则∠AOF=∠COF=∠AOC=(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴CD+OD=DH+FD.根DEFOACB7据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,此时FH=OF•sin∠FOH=OF=6,则OF=4,AB=2OF=8.∴当CD+OD的最小值为6时,⊙O的直径AB的长为8.
本文标题:圆的切线测试题
链接地址:https://www.777doc.com/doc-1854646 .html