您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 北师大版九年级数学上册期末试卷
第1页(共26页)北师大版九年级数学上册期末试卷一.选择题(共10小题)1.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个2.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或43.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.4.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.5.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.6.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.第2页(共26页)7.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y38.已知函数y=(m+2)是反比例函数,且图象在第二、四象限内,则m的值是()A.3B.﹣3C.±3D.﹣9.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:910.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=中,说法正确的是()A.①③④B.②③C.①③D.①②③二.填空题(共10小题)11.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.12.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.13.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.14.设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.第3页(共26页)15.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.16.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=.17.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则=.18.已知实数a,b,c满足a+b+c=10,且,则的值是.19.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=.20.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.三.解答题(共10小题)21.解方程:(1)x2﹣3x﹣1=0.(2)x2+4x﹣2=0.22.解方程:(1)3x(x﹣1)=2x﹣2(2)x2+3x+2=0.第4页(共26页)23.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.24.某商场销售一种冰箱,每台进价2500元.市场调查研究表明,当售价为2900元时,平均每天能售出8台;当售价每降50元时,平均每天就能多售出4台;商场要使这种冰箱的销售利润平均每天达到5000元,每台售价应降低多少元?25.如图,平行四边形ABCD中,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.(1)求证:△ABE≌△CDF;(2)当四边形ABCD满足什么条件时,四边形AECF是菱形?证明你的结论.第5页(共26页)26.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.27.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.第6页(共26页)28.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.29.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.30.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.第7页(共26页)第8页(共26页)北师大版九年级数学上册期末试卷参考答案与试题解析一.选择题(共10小题)1.(2016•广安)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.2.(2016•攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或4【分析】把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【解答】解:根据题意,将x=﹣2代入方程x2+ax﹣a2=0,得:4﹣3a﹣a2=0,即a2+3a﹣4=0,左边因式分解得:(a﹣1)(a+4)=0,∴a﹣1=0,或a+4=0,解得:a=1或﹣4,故选:C.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.第9页(共26页)3.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(2016•兰州)如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.第10页(共26页)5.(2016•兰州)已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.【分析】根据相似三角形的对应中线的比等于相似比解答.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:A.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),第11页(共26页)∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.7.(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确把握反比例函数增减性是解题关键.8.(2016•锦江区模拟)已知函数y=(m+2)是反比例函数,且图象在第二、四象限内,则m的值是()A.3B.﹣3C.±3D.﹣【分析】根据反比例函数的定义先求出m的值,再由图象在第二、四象限内,求出m的值.【解答】解:由函数y=(m+2)为反比例函数可知m2﹣10=﹣1,解得m=﹣3,m=3,又∵图象在第二、四象限内,∴m+2<0,∴m=﹣3.故选B.第12页(共26页)【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式以及对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.9.(2016•十堰)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:9【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,
本文标题:北师大版九年级数学上册期末试卷
链接地址:https://www.777doc.com/doc-1855469 .html