您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2009年辽宁省高考数学试卷(理科)答案与解析
12009年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2009•辽宁)已知集合M={x|﹣3<x≤5},N={x|﹣5<x<5},则M∩N=()A.{x|﹣5<x<5}B.{x|﹣3<x<5}C.{x|﹣5<x≤5}D.{x|﹣3<x≤5}【考点】交集及其运算.菁优网版权所有【分析】由题意已知集合M={x|﹣3<x≤5},N={x|﹣5<x<5},然后根据交集的定义和运算法则进行计算.【解答】解:∵集合M={x|﹣3<x≤5},N={x|﹣5<x<5},∴M∩N={x|﹣3<x<5},故选B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.(5分)(2009•辽宁)已知复数z=1﹣2i,那么=()A.B.C.D.【考点】复数代数形式的混合运算.菁优网版权所有【分析】复数的分母实数化,然后化简即可.【解答】解:=故选D.【点评】复数代数形式的运算,是基础题.3.(5分)(2009•辽宁)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4D.12【考点】向量加减混合运算及其几何意义.菁优网版权所有【分析】根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.【解答】解:由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.4.(5分)(2009•辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()2A.(x+1)2+(y﹣1)2=2B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2D.(x+1)2+(y+1)2=2【考点】圆的标准方程.菁优网版权所有【分析】圆心在直线x+y=0上,排除C、D,再验证圆C与直线x﹣y=0及x﹣y﹣4=0都相切,就是圆心到直线等距离,即可.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选B.【点评】一般情况下:求圆C的方程,就是求圆心、求半径.本题是选择题,所以方法灵活多变,值得探究.5.(5分)(2009•辽宁)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种【考点】分步乘法计数原理.菁优网版权所有【分析】不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.【解答】解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84﹣10﹣4=70种.故选A【点评】直接法:先分类后分步;间接法:总数中剔除不合要求的方法.6.(5分)(2009•辽宁)设等比数列{an}的前n项和为Sn,若=3,则=()A.2B.C.D.3【考点】等比数列的前n项和.菁优网版权所有【分析】首先由等比数列前n项和公式列方程,并解得q3,然后再次利用等比数列前n项和公式则求得答案.【解答】解:设公比为q,则===1+q3=3,所以q3=2,所以===.3故选B.【点评】本题考查等比数列前n项和公式.7.(5分)(2009•辽宁)曲线y=在点(1,﹣1)处的切线方程为()A.y=x﹣2B.y=﹣3x+2C.y=2x﹣3D.y=﹣2x+1【考点】导数的几何意义.菁优网版权所有【专题】计算题.【分析】根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.【解答】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D【点评】本题考查了导数的几何意义,以及导数的运算法则,本题属于基础题.8.(5分)(2009•辽宁)已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A.﹣B.﹣C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的周期性及其求法.菁优网版权所有【专题】计算题.【分析】求出函数的周期,确定ω的值,利用f()=﹣,得Asinφ=﹣,利用f()=0,求出(Acosφ+Asinφ)=0,然后求f(0).【解答】解:由题意可知,此函数的周期T=2(π﹣π)=,故=,∴ω=3,f(x)=Acos(3x+φ).f()=Acos(+φ)=Asinφ=﹣.又由题图可知f()=Acos(3×+φ)=Acos(φ﹣π)=(Acosφ+Asinφ)=0,∴f(0)=Acosφ=.4故选C.【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的周期性及其求法,考查视图能力,计算能力,是基础题.9.(5分)(2009•辽宁)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<f()的x取值范围是()A.(,)B.[,)C.(,)D.[,)【考点】奇偶性与单调性的综合.菁优网版权所有【专题】分析法;函数的性质及应用.【分析】由题设条件偶函数f(x)在区间[0,+∞)单调增加可得出此函数先减后增,以y轴为对称轴,由此位置关系转化不等式求解即可【解答】解析:∵f(x)是偶函数,故f(x)=f(|x|)∴f(2x﹣1)=f(|2x﹣1|),即f(|2x﹣1|)<f(||)又∵f(x)在区间[0,+∞)单调增加得|2x﹣1|<,解得<x<.故选A.【点评】本题考查了利用函数的单调性和奇偶性解不等式,在这里要注意本题与下面这道题的区别:已知函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<的x取值范围是()10.(5分)(2009•辽宁)某店一个月的收入和支出总共记录了N个数据a1,a2,…aN,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()5A.A>0,V=S﹣TB.A<0,V=S﹣TC.A>0,V=S+TD.A<0,V=S+T【考点】设计程序框图解决实际问题.菁优网版权所有【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知S表示月收入,T表示月支出,V表示月盈利,根据收入记为正数,支出记为负数,故条件语句的判断框中的条件为判断累加量A的符号,由分支结构的“是”与“否”分支不难给出答案,累加完毕退出循环后,要输出月收入S,和月盈利V,故在输出前要计算月盈利V,根据收入、支出与盈利的关系,不难得到答案.【解答】解析:月总收入为S,支出T为负数,因此A>0时应累加到月收入S,故判断框内填:A>0又∵月盈利V=月收入S﹣月支出T,但月支出用负数表示因此月盈利V=S+T故处理框中应填:V=S+T故选A>0,V=S+T【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.(5分)(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()A.1:1B.1:2C.2:1D.3:2【考点】棱柱、棱锥、棱台的体积.菁优网版权所有【专题】计算题;压轴题;转化思想.【分析】由于G是PB的中点,故P﹣GAC的体积等于B﹣GAC的体积;求出DH=2BH,即可求出三棱锥D﹣GAC与三棱锥P﹣GAC体积之比.【解答】解:由于G是PB的中点,故P﹣GAC的体积等于B﹣GAC的体积在底面正六边形ABCDER中BH=ABtan30°=AB而BD=AB故DH=2BH于是VD﹣GAC=2VB﹣GAC=2VP﹣GAC故选C.【点评】本题考查棱锥的体积计算,考查转化思想,是基础题.12.(5分)(2009•辽宁)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()6A.B.3C.D.4【考点】函数的图象与图象变化.菁优网版权所有【专题】压轴题.【分析】先由题中已知分别将x1、x2所满足的关系表达为,2x1=2log2(5﹣2x1)…系数配为2是为了与下式中的2x2对应2x2+2log2(x2﹣1)=5,观察两个式子的特点,发现要将真数部分消掉求出x1+x2,只须将5﹣2x1化为2(t﹣1)的形式,则2x1=7﹣2t,t=x2【解答】解:由题意①2x2+2log2(x2﹣1)=5②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C【点评】本题涉及的是两个非整式方程,其中一个是指数方程,一个是对数方程,这两种方程均在高考考纲范围之内,因此此题中不用分别解出两个方程,分别求出x1,x2,再求x1+x2,这样做既培养不了数学解题技巧,也会浪费大量时间.二、填空题13.(5分)(2009•辽宁)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为1013h.【考点】分层抽样方法.菁优网版权所有【分析】由三个分厂的产量比,可求出各厂应抽取的产品数,再计算均值即可.【解答】解:从第一、二、三分厂的抽取的电子产品数量分别为25,50,25,则抽取的100件产品的使用寿命的平均值为=1013.故答案为:1013【点评】本题考查分层抽样和样本的均值,属基本题.再求均值时,要注意各部分所占的比例.14.(5分)(2009•辽宁)等差数列{an}的前n项和为Sn,且6S5﹣5S3=5,则a4=.【考点】等差数列的前n项和.菁优网版权所有【专题】计算题.7【分析】根据等差数列的前n项和的公式表示出S5和S3,然后把S5和S3的式子代入到6S5﹣5S3=5中合并后,利用等差数列的通项公式即可求出a4的值.【解答】解:∵Sn=na1+n(n﹣1)d∴S5=5a1+10d,S3=3a1+3d∴6S5﹣5S3=30a1+60d﹣(15a1+15d)=15a1+45d=15(a1+3d)=15a4=5解得a4=故答案为:【点评】此题要求学生灵活运用等差数列的通项公式及前n项和的公式,是一道中档题.15.(5分)(2009•辽宁)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为4m3.【考点】由三视图求面积、体积.菁优网版权所有【专题】计算题;压轴题.【分析】由三视图可知几何体是三棱锥,明确其数据关系直接解答即可.【解答】解:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4故答案为:4【点评】本题考查三视图求体积,三视图的复原,考查学生空间想象能力,是基础题.16.(5分)(2009•辽宁)已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为9.【考点】双曲
本文标题:2009年辽宁省高考数学试卷(理科)答案与解析
链接地址:https://www.777doc.com/doc-1856304 .html