您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年全国统一高考数学试卷(理科)(全国卷新课标1)
..eord完美格式2019年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3}2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cmB.175cmC.185cmD.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A...eord完美格式B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()..eord完美格式A.A=B.A=2+C.A=D.A=1+9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则()A.an=2n﹣5B.an=3n﹣10C.Sn=2n2﹣8nD.Sn=n2﹣2n10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。..eord完美格式13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为.14.(5分)记Sn为等比数列{an}的前n项和.若a1=,a42=a6,则S5=.15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.16.(5分)已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,•=0,则C的离心率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsinC.(1)求A;(2)若a+b=2c,求sinC.18.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值...eord完美格式19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{pi+1﹣pi}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为..eord完美格式2ρcosθ+ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.[选修4-5:不等式选讲](10分)23.已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24...eord完美格式2019年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3}【考点】1E:交集及其运算;73:一元二次不等式及其应用.菁优网版权所有【分析】利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题.2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=1【考点】A4:复数的代数表示法及其几何意义;J3:轨迹方程.菁优网版权所有【分析】由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z﹣i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z﹣i=x+(y﹣1)i,∴|z﹣i|=,∴x2+(y﹣1)2=1,故选:C.【点评】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a..eord完美格式【考点】4M:对数值大小的比较.菁优网版权所有【分析】由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cmB.175cmC.185cmD.190cm【考点】31:函数的概念及其构成要素;F4:进行简单的合情推理.菁优网版权所有【分析】充分运用黄金分割比例,结合图形,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,..eord完美格式可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.菁优网版权所有【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.【解答】解:∵f(x)=,x∈[﹣π,π],..eord完美格式∴f(﹣x)==﹣=﹣f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f()=,因此排除B,C;故选:D.【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.菁优网版权所有【分析】由(﹣)⊥,可得,进一步得到,然后求出夹角即可...eord完美格式【解答】解:∵(﹣)⊥,∴=,∴==,∵,∴.故选:B.【点评】本题考查了平面向量的数量积和向量的夹角,属基础题.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+【考点】EF:程序框图.菁优网版权所有【分析】
本文标题:2019年全国统一高考数学试卷(理科)(全国卷新课标1)
链接地址:https://www.777doc.com/doc-1861934 .html