您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 指数平滑法初始值计算与平滑系数选取的新方法-何舒华
10220114JournalofGuangzhouUniversityNaturalScienceEditionVol.10No.2Apr.20112010-11-102010-12-161956-.E-mailheshuhua5653@126.com1671-4229201102-0006-05510000t*t<=t*t>t*k50%α.O213A19591-3..S0α.S0α4-8.11.y1y2…yt-1ytSty1y2…yt-1ytSt=αyt+1-αSt-11SttyttSt-1t-1α0<a<1.1St=αyt+1-ααyt-1+1-αSt-2=αyt+α1-αyt-1+1-α2St-2=αyt+α1-αyt-1+α1-α2yt-2+…+α1-αt-1y1+1-αtS0=α∑t-1j=01-αjyt-j+1-αtS02β=1-α0<β<1St=αyt+αβyt-1+αβ2yt-2+…+αβt-1y1+βtS0=α∑t-1j=0βjyt-j+βtS031、23.ω0=βtω0S0.ωj=αβt-jj=t…21ωjyj1>ωt>ωt-1>ωt-2>…>ω2>ω1>0.S0St1y1S0S0Stα=0.1t=10ω0=βt=1-0.110=0.3486784ω10=a=0.1α=0.05t=10ω0=βt=1-0.0510=0.598737ω10=a=0.05S0ω02ytωty1S0y1ω1ωt.2St.αSt.y1S0St=αyt+α1-αyt-1+α1-α2yt-2+…α1-αt-1y1+1-αtS0|S0=y14StS0St1=αyt+α1-αyt-1+α1-α2yt-2+…α1-αt-1y1+1-αtS0|S0=St5St1S0St2=αyt+α1-αyt-1+α1-α2yt-2+…α1-αt-1y1+1-αtS0|S0=St16mStm-1S0Stm=αyt+α1-αyt-1+α1-α2yt-2+…α1-αt-1y1+1-αtS0|S0=Stm-17mStmStm-1.Stmytyt-1…y1.S0ω00ωtωt-1…ω1.4~7ωtωt-1…ω1ω0St=αyt+αβyt-1+αβ2yt-2+…+αβt-1y1+βtS0S1t=αyt+αβyt-1+αβ2yt-2+…+αβt-1y1+βtαyt+αβyt-1+αβ2yt-2+…+βtS0=1+βtαyt+αβyt-1+αβ2yt-2+…αβt-1y1+β2tS08S2t=αyt+αβyt-1+αβ2yt-2+…+αβt-1y1+βt1+βtαyt+αβyt-1+…+β2tS0=1+βt+β2tαyt+αβyt-1+αβ2yt-2+…+αβt-1y1+β3tS09mStmStm=1+βt+β2t+…+βmtαyt+αβyt-1+…+αβt-1y1+βm+1tS010C=1+βt+β2t+…+βmtStm=Cαyt+αβyt-1+αβ2yt-2+…+αβt-1y1+βm+1tS011βm+1t0Smt≈Cαyt+αβyt-1+αβ2yt-2+…+αβt-1y112ytyt-1…y1CαCαβCαβ2…Cαβt-1C=1+βt+β2t+…+βmt=1-βm+1t/1-βt≈1/1-βtSt≈α1-βtyt+αβ1-βtyt-1+αβ21-βtyt-2+…+αβt-11-βty1133St=αyt+α1-αyt-1+α1-α2yt-2+…+α1-αt-1y1α+α1-α+α1-α2+…+α1-αt-1=α∑t-1j=01-αjyt-jα∑t-1j=01-αj14α∑t-1j=01-αj=α∑t-1j=0βj=1-βtSt=α1-βtyt+αβ1-βtyt-1+αβ21-βtyt-2+…+αβt-11-βty1154.St=yt+βyt-1+β2yt-2+…+βt-1y11+β+β2+…+βt-1=∑t-1j=0βtyt-j∑t-1j=0βt∑t-1j=0βt=1+β+β2+…+βt-1=1-βt/1-β=1-βt/α710St=∑t-1j=0βtyt-j∑t-1j=0βt=α1-βt∑t-1j=0βtyt-j=αα-βtyt+αβ1-βtyt-1+αβ21-βtyt-2+…+αβt-11-βty116t=10α=0.1i=123…10、1.1Table1Thecomparisonofweightasiterationsincreasetiα=0.1β=0.9i=1i=2i=3…i=9i=100w00.34870.12160.0424…0.00010.0000tt1ω10.03870.05230.0570…0.05950.059510.03870.059510.38740.05952ω20.04300.05810.0633…0.06610.066120.04300.066120.43050.06613ω30.04780.06450.0703…0.07340.073430.04780.073430.47830.07344ω40.05310.07170.0781…0.08160.081640.05310.081640.53140.08165ω50.05900.07960.0868…0.09070.090750.05900.090750.59050.09076ω60.06560.08850.0965…0.10070.100760.06560.100760.65610.10077ω70.07290.09830.1072…0.11190.111970.07290.111970.72900.11198ω80.08100.10920.1191…0.12440.124480.08100.124480.81000.12449ω90.09000.12140.1323…0.13820.138290.09000.138290.90000.138210ω100.10000.13490.1470…0.15350.1535100.10000.1535101.00000.15351.00001.00001.0000…1.00001.00000.65131.00006.51321.0000StS0ω00ytyt-1…y1.αSt.tω0=βtωtω0S0.ω*0=0.1ωtt*=log0.1α/log1-αt*.t*St.2α1αα.αααt≤10α.2α2α.①kytyt-1…yt-k+1≥80%αβ.kytyt-1…82yt-k+1Sk=α1-βk1-βtytyt-1…y1St=α1-βt1-βkPk=SkSt=1-βk1-βt.1-βk=0.81-βt≤1k=1-βk1-βt≥0.8.2、3tkk0.8.2kβtkPkTable2AccumulativecontributionratePkofthemostrecent510dataunderdifferentcorrespondingandvaluekβt=20t=40t=6050.7248Pk=0.8013Pk=0.8000Pk=0.8000100.8513Pk=0.8334Pk=0.8014Pk=0.8000β0.7248α=0.27525≥80%β0.8513α=0.148710≥80%.②nn+150%βn.1yt12yt-1nn+1yt-nααβαβ2…αβn.βn=0.5nn+1yt-n1yt50%ββ=0.51/nαα=1-β.3n=3510βαTable3CorrespondingvalueofβandαwhenHLhalf-lifenequalsto3510respectivelynβα30.79370.206350.87060.1294100.93300.0670α=0.2063β=0.79373+1yt-3150%n=3α=0.1294β=0.87065+1yt-5150%n=5.k≥80%n+150%n=αβα.③^yt+1=St=αyt+1-α^yt=^yt+αyt-^yty⌒t+1yt-y⌒ty⌒t.α.31αS0StS0.2tαSt.t>t*t*St.3k≥80%n50%αn=αα.910References1DENGJi-xianYANGWei-quanXULiu-jun.MathematicalmethodsofeconomicforecastanddecisionmakingM.GuangzhouSunYat-senUniversityPress1986.inChinese2FENGWen-quan.TechnologyofeconomicforecastanddecisionmakingM.WuhanWuhanUniversityPress1994.inChinese3LIXin-yu.StatisticsforbusinessandeconomicsM.BeijingBeijingUniversityPress1999.inChinese4HANDe-zhong.AnoptimizationofthesmoothcoefficientJ.StatisticalResearch1993650-52.inChinese5TANGYan-sen.ExponentialsmoothingforecastingformulaandsmoothingcoefficientJ.Statistics&InformationTribunes1998138-43.inChinese6WANGChang-jiang.SelectionofsmoothingcoefficientviaexponentialsmoothingalgorithmJ.JournalofNorthUniversityofChinaNaturalScienceEdition2006276558-561.inChinese7SHANYi-binJINMing.AboutdeterminationofsmoothingcoefficientandinitialvalueJ.JournalofDalianUniversity199772175-177.inChinese8LIBing-zhou.AdiscussionaboutthemathematicalprincipleofexponentialsmoothingJ.JournalofChang'anUniversityNaturalScienceEdition198644151-160.inChinese1.M.1986.2.M.1994.3.M.1999.4.J.1993650-52.5.J.1998138-43.6.J.2006276558-561.7.J.199772175-177.8.J.198644151-160.ThenewmethodsofcalculatinginitialvalueandselectingsmoothingcoefficientinexponentialsmoothingHEShu-huaHEAi-linInvestmentDirectorOAKINVESCOGuangzhouLimitedGuangzhou510000ChinaAbstractThispaperprovesthataftertimesofiterationstheresultsfromexponentialsmoothingmethodcouldrapidlyapproachthoseresultsformexponentweightedaveragemethod.Itfurtherproposestheuseofdifferentmethodstocalculateexponentialsmoothingvalueaccordingtodataamountwhent<=t*t*referstothemin-imumdataamountforrecurrencealgorithmiterationsorfullexponentweightedaveragemethodisu
本文标题:指数平滑法初始值计算与平滑系数选取的新方法-何舒华
链接地址:https://www.777doc.com/doc-1871391 .html